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Care is complex but recent advances are helping to unravel this

complexity. The factors that promote the evolutionary origins of

care and those promoting the subsequent evolution,

diversification and maintenance of care are not the same.

Theoretical and empirical research suggest that the origin of

parental care will depend primarily on offspring survival in the

absence of care, as long as there are appropriate behavioural

precursors and genetic co-variation between parent and

offspring behaviours for care to evolve. In contrast, which sex

cares and how much care is provided is shaped by a suite of

related factors that affect how the behaviour of family members

co-evolves, including adult mortality rates, parentage, sexual

selection and mechanisms underlying the resolution of

evolutionary conflicts. The general outcome of this is that in

most taxa where parents provide care females are the primary

carer. When males provide care alone they can be as effective

as females in caring and increasing offspring survival. In

contrast, comparative analyses show that biparental care

mainly arises from males joining females and that the main

benefit of male (biparental) care is an increase in the productivity

of females, not the survival of offspring. The evolution of parental

care is a dynamic, multivariate process that involves the co-

evolution of multiple traits in males, females and offspring.
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Introduction
Care is complex

One of our children recently defined parental care for us

as ‘it’s complicated and rare, but I know it when I see it.’
Current Opinion in Behavioral Sciences 2016, 12:30–36 
Though facetious, this is a reasonable description of the

current state of the field. But why should this be so? Part

of the problem is that defining care can be difficult —

parental care is perhaps better considered a concept than

a phenotype that is easily measured — and can take many

forms from simple protection of eggs to highly elaborate

delivery of food, protection, and housing for developing

young [1]. Another problem is there are few universal

generalisations, although the exceptions should be infor-

mative. Females are more frequently the caregivers when

there is care [2], and when males care it is usually with a

female partner (i.e., biparental care). Male only care is

rare — except in fish where it is the norm for some groups.

Even this attempt at generalization is too simple. Not

only does the form of care vary taxonomically, there are

species where female only care, biparental care and male

only care can all be expressed. In some plovers, for

example, there is everything from no care (where the

nest typically fails) to male only to female only to bipa-

rental care, depending on which sex deserts or does not

desert the nest [3]. If care is important and beneficial, why

is there so much variation? In recognition of this variabil-

ity, there is increasing realization that parental care is

highly complex, both in the terms of the characteristics

and behaviours expressed and the factors underlying the

evolution of those traits. Observed patterns of parental

care, therefore, have not evolved as a single evolutionary

transition. Instead, parental care involves the evolution of

multiple behaviours that co-evolve in response to and

along with many other aspects of the reproductive biology

and ecology of a species. Despite the potential difficulties

of unravelling this rich complexity, recent studies have

provided significant new insights into both the origins and

subsequent evolution and diversification of parental care.

Here we highlight some of these studies and provide

some pointers for future work.

The evolutionary origins of parental care
Ecological factors can increase offspring need and

select for care

The first step in the evolution of parental care is a

transition from an ancestral state of no care to the

existence of some form of parental care. The key factor

driving this transition is high offspring need [4,5]. Off-

spring need is expected to be dictated by extreme

environments, either favourable (e.g., rich but ephem-

eral resources) or unfavourable (e.g., high levels of

environmental stress or predation) [6]. In these circum-

stances parental care is more likely to evolve because

offspring survival is low in the absence of care [4,7].

Empirical evidence in support of this idea has been
www.sciencedirect.com
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difficult to come by, largely because there are few

species where transitions between states of care from

no care have been observed and due to the subsequent

evolution of many traits following the origin of care.

However, a recent study on long-tailed skinks Eutropis
longicaudata is an exception [8�]. This species does not

normally provide parental care, but maternal care has

been observed in one island population. A common

garden experiment showed that there was heritable

variation underlying the expression of parental care.

Field experiments further showed that parental care

significantly increased egg survival by reducing the

probability of predation by egg-eating snakes (which

are not abundant in other populations of skink). A

reduction in egg survival as a result of predation by

snakes has apparently favoured the evolution of parental

care from a non-caring state in this species [8�].

But only if there are appropriate behavioural precursors

Ecological drivers favouring the origin of care alone is too

simplistic, as there are alternative solutions to environ-

mental extremes. It has long been recognized parental

care only evolves as the solution if there are appropriate

behavioural precursors [9]. A recent study by Cunning-

ham et al. [10�] on Nicrophorus vespilloides burying beetles,

which have extended parental care, including offspring

provisioning by regurgitation of food to begging larvae

[11,12], provides an example of such a precursor. The

authors found that gene expression of a pathway that

influences motivation to eat is altered during parental

care. Specifically the neuropeptide F receptor was down-

regulated during active care. This indicates that the

provisioning of offspring has evolved via selection acting

on, and modifying, self-feeding behaviour [10�].

Once care has originated transgenerational, co-

evolutionary effects determine trajectories

Whilst such behavioural precursors provide the neces-

sary kick-start in the right direction co-evolutionary

feedback loops are likely to be important in determining

subsequent evolutionary trajectories [13,14]. One of the

peculiarities of parental care is that it affects both

parental and offspring fitness. If heritable, both the care

and the effects of care can be genetically correlated,

resulting in unexpected influences on the outcome. For

example, negative genetic correlations between care

and effects of care result in high provisioning mothers

having offspring that respond less strongly to provision-

ing [15]. These correlations can also influence care

across generations. A study of earwigs Forficula auricu-
laria by Thesing et al. [16�] demonstrated that offspring

reared without a mother were poorer mothers them-

selves, and there was a heritable component to this,

highlighting the importance of such transgenerational,

co-evolutionary effects in the maintenance of parental

care once it has originated.
www.sciencedirect.com 
Female care or male care?
Adult mortality rates are important determinants of

which sex cares

In both earwigs and long-tailed skinks it is females who

provide the care, and not males. Maternal care is most

common across the majority of taxa where care exists,

including mammals and reptiles [17] and invertebrates

[18,19]. However, male care is just as common as female

care in amphibians [17] and is more common in fishes

than female care [17,20]. In species that can have both

female-only and male-only parental care, such as the

burying beetle species Nicrophorus vespilloides (which also

has biparental care), male-only care can be just as effec-

tive as female-only care in terms of offspring fitness

[21,22], and a recent transcriptomics study showed that

gene expression profiles of males caring for young by

themselves were very similar to that of females caring by

themselves, indicating that male-only care is physiologi-

cally and functionally similar to female-only care

(Figure 1) [23��]. So what determines whether it is female

or male care that evolves from a state of no care? There

appears to be no one-size-fits-all answer to this question,

and some taxonomic patterns are easier to explain than

others. Recent theory indicates that sex differences in

initial gamete investment do not explain the origins of

these patterns of care. Rather it is relative adult mortality

rates that can drive which sex cares [24]: the sex with the

higher mortality, that is, reduced future reproductive

potential, is the sex more likely to provide care. This is

an area where more data would be particularly welcome.

The evolution of biparental care
Adult sex ratios and the intensity of sexual selection

affect the probability of biparental care

Adult mortality rates have also been shown to be important

in the evolution of biparental care. Biparental care is a

relatively rare form of care in invertebrates [19,21], fishes

and mammals [17], but is more common in amphibians,

and is the predominant form in birds [17]. Remeš et al. [25�]
conducted a comparative analysis of 659 species of bird

from 113 families that have biparental or uniparental care

and found that biparental was less likely as the intensity of

sexual selection increased and as adult sex ratios became

more skewed, independent of non-social environmental

factors such as climate. Adult sex-ratios vary with sex

differences in mortality, amongst other things, and sexual

selection and parental care both have mortality conse-

quences, so are linked in eco-evolutionary feedback loops

[26]. Such sex differences in mortality affect the costs and

benefits of care in males and females [24], which can

reinforce sex roles in parental care as a result of the co-

evolution of care and the ability to provide care [27].

In species with biparental care, males are not as

committed to care as females

Because males and females can experience different costs

and benefits of care, biparental perhaps more often
Current Opinion in Behavioral Sciences 2016, 12:30–36
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Figure 1
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Genetic evidence for reduced participation in biparental care by males. There are few overlapping gene expression changes when comparing

biparental males with any other social condition. The pie charts illustrate differential gene expression (in the same direction) in (a) caring

uniparental females and males, (b) caring biparental females and biparental males, (c) caring uniparental and biparental females, and (d)

uniparental and biparental males from before care to during care. Numbers indicate the number of significantly differentially expressed genes, with

expression changes in the same direction, in a given social condition (green = female, blue = male, yellow = overlap). Modified from Ref. [23].
describes the social condition of families rather than the

combined behavioural contributions of parents in isola-

tion from one another [23��]. Comparative studies

across different taxa indicate that biparental care pri-

marily arises from males joining caring females as a

result of social environmental factors related to the

availability of additional mating opportunities and the

ability of males to secure them [19,25�,28,29�]. In the

majority of species with biparental care females still

provide more care than males [2], and the benefits of

male care to offspring success appear to be limited in

many species where males care with females, including

humans [30,31�]. For example, empirical work on Nicro-
phorus vespilloides burying beetles showed that males

spent more time providing care when there was more,

not less, male–male competition [32]. Males were

therefore primarily ‘providing care’ to protect their

paternity rather than increase offspring survival

[32,33]. This is further supported by the transcriptomic

study of Parker et al. [23��] who found that biparental

male gene expression was more similar to non-caring

males than to caring females or uniparental males

(Figure 1). Consequently males are generally not as

committed to care as females in biparental unions,

providing plenty of scope for sexual conflict.
Current Opinion in Behavioral Sciences 2016, 12:30–36 
The resolution of sexual conflict
Brood size may co-evolve with male care and resolve

sexual conflict

Care is costly and sex differences in these costs leads to

selection pressures differing between males and females

and thus sexual conflict [34]. So how is the sexual conflict

resolved so that biparental care can occur? Stockley &

Hobson [29�] tested whether biparental care in mammals,

which is rare, evolved because male care improved off-

spring survival, or, instead, increased offspring productiv-

ity (litter size). The results supported the latter indicating

that male care co-evolved with litter size when males

provision offspring — an increase in male care, perhaps

related to paternity protection [32], allowed females to

produce larger litters, and the greater the number of

offspring the greater the value of male care — stabilizing

biparental care and monogamy (Figure 2) [35]. This most

likely occurred because female reproductive investment

is constrained by life-history trade-offs, but male care

relaxes these constraints, allowing females to invest in

offspring productivity [29�].

Maternal effects may facilitate conflict resolution

A recent review highlighted how females may facilitate

such co-evolution, and resolve sexual conflict, by using
www.sciencedirect.com
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Plots illustrating how the shape of genetic trade-offs affects the

battleground of parent-offspring conflict. (a) Curved trade-off between

the probability of parental future reproduction with current offspring

fitness, showing with diminishing returns (grey line). The slope of the

fitness tangent for offspring (red line) is steeper (�2) than that of

parents (blue line; �1), because offspring are half as related to their

(full) siblings as they are to themselves, whereas parents are equally

related to all offspring. As a result the optima of parents and offspring

differ (blue and red circles, respectively), so there is conflict over the

amount of parental investment that should be provided between

parents and current offspring. (b) Linear trade-off with constant

returns. When the parent and offspring slopes are in the blue area

there is agreement between parents and current offspring that the

parent should not produce future offspring. In contrast, when the

parent and offspring slopes are in the red area there is agreement that

the parent should terminate current parental care in order to invest in

future offspring (i.e., produce another clutch). Only in the white area is

there conflict between parent and offspring over whether or not to

invest in future offspring. In earwigs, trade-offs were curved with

diminishing returns for pre-hatching traits such as egg development

rate, but were linear with constant returns for post-hatching traits such

as current offspring growth rate and survival probability. Re-drawn

from Ref. [45].

Figure 2
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Co-evolution between male (biparental) care and litter/clutch size. In

mammals evidence presented in Ref. [29] supported a co-evolutionary

pathway whereby litter size increased following the evolution of males

joining females to provide care (provisioning), as shown by the blue

arrows. The alternative pathway, in the reverse direction was not

supported (black arrows). The thickness of the arrows shows the

strength of the support for the direction of the transition between

states, with dashes indicting particularly weak support. The ancestral

state in mammals is female only care with small litter sizes. Male care

therefore facilitates an increase in female productivity (see main text

for further details). However, in other taxa with biparental care the co-

evolutionary pathways are currently unknown. Re-drawn from Ref.

[29].
maternal effects as an incentive to males to provide more

care [36]. Clutch or litter size can be considered to be a

maternal effect because it can have a causal effect on

offspring phenotype/fitness [37,38]. The co-evolution of

litter size and male care in mammals described by Stock-

ley & Hobson [29�] provides a potential example of this:

females may increase litter size in order to ‘incentivise’

males to stick around longer and increase investment,

making the current brood more valuable to the male and

male care more valuable to the female [35,38,39], espe-

cially if further mating opportunities [40] and/or future

reproductive potential [24] are low for males.

Females may use hormones to influence male behaviour

and resolve conflict

An insight into the mechanistic basis by which sexual

conflict may be resolved and male care encouraged by

females in a species with biparental care is illustrated by a

new study by Engel et al. [41��]. Nicrophorus vespilloides
burying beetles communicate their hormonal status to

their male partners using an anti-aphrodisiac pheromone,

methyl geranate. This stops males trying to mate with

females whilst they are providing care. Mating at a high

frequency is potentially good for males as it provides

paternity assurance [42], especially when there is compe-

tition from rivals [32], but it is costly for females [43].

Methyl geranate emission is closely linked to production

of juvenile hormone, and both peak during offspring

provisioning [41��]. Production of methyl geranate during

periods of peak care by females signals their temporary
www.sciencedirect.com 
infertility to their partners and in doing so switches off the

mating drive of males, which may increase the probability

he would engage in parental care [44]: hormonal control of

male behaviour by females to avoid costly mating helps

resolve sexual conflict and may promote the co-evolution

of male and female care.

Co-evolution and conflict
Co-evolution can occur without conflict

Does co-evolution of family members always go hand-in-

hand with conflict? A study by Kölliker et al. [45��]
provides significant new insights that suggest not. They

used selection lines to test for a genetic conflict between

parents and offspring by examining the trade-off between

offspring performance and a parent’s ability to raise

additional offspring in earwigs Forficula auricularia. By

selecting on female future reproduction (second clutch

size) and assessing correlated responses in the survival,

development rate and growth of current offspring they

established that there were genetic trade-offs between
Current Opinion in Behavioral Sciences 2016, 12:30–36
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offspring performance and parental future reproduction.

However, the shape of these trade-offs differed before

and after hatching: there was evidence that parental

investment fitness optima differed between parents

and offspring before, and hence there was parent-off-

spring conflict, but not after, hatching (Figure 3). Parent-

offspring conflict is therefore not inevitable and depends

upon the shape of the trade-off at different life stages and

the specific traits involved. Consequently although there

is antagonistic parent-offspring co-evolution parental in-

vestment may evolve without conflict in earwigs [45��].

Summary and conclusion
Parental care is complex but recent work is providing

significant new insights that are helping to unpack

that complexity to reveal some underlying patterns. For
Figure 4
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example, it is important to recognize that origin is not

equivalent to the maintenance or subsequent elaboration

of care (Figure 4). Ecological factors that affect offspring

survival, such as the rate of predation, combined with

associated behavioural precursors and the necessary genet-

ic (co-)variation in behaviour between parents and off-

spring are central to the origin of parental care (Figure 4a).

In contrast, once parental care has originated whether it is

maintained or not depends more on adult than offspring

mortality, with the benefits of parental care increasing as

adult mortality decreases and as the juvenile period

increases [7]. Furthermore, co-evolutionary feedback be-

tween parents and offspring increases the mutual depen-

dence [46], making it difficult to lose complex care once it

has originated [47]. Who, how much and what form of care

is provided depends on a suite of inter-related factors
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including adult mortality rate [5], parentage and the inten-

sity of sexual selection [2,26], the costs and benefits of care

[27], the mechanisms underlying care behaviours and the

resolution of conflicts, that affect the co-evolution of

multiple traits in family members (Figure 4b). Thus,

the complexity of care, involving diverse behaviours (de-

fence, food acquisition and maintenance, nest mainte-

nance, regurgitated food, etc.), may evolve in stepwise

fashion. ‘Parental care’ is therefore multivariate and

increases in complexity over time and the nature of this

complexity will reflect a variety of factors.

The studies highlighted in this review demonstrate that

we need to take a holistic approach that recognizes that

parental care is a co-evolving game for the whole family,

and even non-caring members of the family may have

important effects on the evolution of family life. For

example, in the Engel et al. [41��] study it is offspring

behaviour that likely modifies the production of juvenile

hormone during provisioning, and, therefore the anti-

aphrodisiac methyl geranate. As a result the more de-

manding offspring are of their mother the less amorous

their father is likely to be: offspring effectively control the

mating behaviour of their father via their mother [44]! In

another example, caring male sticklebacks Gasterosteus
aculeatus were less attracted to females that had been

stressed by exposure to predators and reduced their

subsequent parental care accordingly [48�]. The experi-

ences of the non-caring parent (females) therefore im-

pacted offspring directly via the effects of stress on

offspring phenotype, and indirectly, through reduced care

by males. Understanding the evolution of parental care

requires a dynamic, multivariate [26,46], multidimension-

al [41��] perspective in combination with use of suites of

complimentary tools and approaches. Moreover, it is

important to differentiate between studies aimed at

explaining the origins versus the elaboration of care.

The studies presented here light the way.
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