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Abstract A long-standing hypothesis in behavioural
ecology posits that males with greater resource-holding
potential (RHP) control resource sites deemed more
valuable by sexually-receptive females and, thereby, males
controlling such sites accrue greater reproductive success
(RS). This hypothesis has historically been investigated
using three separate but non-mutually exclusive relation-
ships (male RHP vs. resource value, resource value vs.
male RS and male RHP vs. RS). The relationships between
these three variables are predicted to be strongly positive,
however, due to measurement error and biological noise,
perfect correlations (r = 1.0) are rare in biology even for
well-established relationships. Moreover, the inaccurate
identification of either the male trait(s) important to RHP
or the resource characteristic sought by females will
weaken the observed strength of the relationships. Here, 1
use meta-analysis to quantitatively describe the general
pattern of these relationships in animals. I predict that the
relationships between male RHP, resource-value and RS
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should be significantly positive (male RHP and resource-
value should explain a large amount of the variation in male
RS). My meta-analysis supports this hypothesis; however,
in the best case scenario only ca. 20% of the variation in the
response variable was explained. I conclude by identifying
areas in which we need to improve our investigations of
resource-defence animals and recommending approaches to
meet these needs.

Keywords Resource-defence - Resource-holding potential -
Resource value - Mating success - Sexual selection -
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Introduction

Breeding female animals require particular materials from
the environment, such as oviposition or egg-laying sites,
food and refugia from predators (Emlen and Oring 1977;
Thornhill and Alcock 1983). If the resources critical to
adult females are economically defendable by single adult
males, for example by being spatially or temporally
clumped, males can increase their fitness by controlling
the resources and exchanging access to them for copulations
(Emlen and Oring 1977; Brown et al. 1997). The greater the
degree to which resources can be monopolized by males,
the greater the variance in male reproductive success and
the more intense the sexual selection on male traits
favouring control of resources (Emlen and Oring 1977;
Shuster and Wade 2003).

Sexually-receptive females should seek the best avail-
able resources if their fitness is tied to resource quality, as it
often is (Meller and Jennions 2001a). There are six
hypotheses explaining how females could assess resource
value and decide to settle on particular resource sites or
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territories. These hypotheses assume that males always
occupy the resources that the females need unlike, for
example, in Hemideina tree weta where empty refuges are
occasionally available to females (Kelly 2006c). First,
females could choose based on resource value alone if
resources are more readily assessed than male quality and if
there is little possibility for male deceit about resource
value (Searcy 1979). Moreover, if male-male competition
for resources acts as a filter to male genetic quality then, by
default, females should acquire a high-quality male on a
high-value resource. Hence, Brown et al. (1997) suggest
that females should be selected to assess resource value and
if female mate choice exists, it should be exercised either
during or after copulation, not before. It should also be noted
that although females could accrue direct fitness benefits by
choosing males based on phenotype (e.g. decreased risk of
acquiring sexually transmitted diseases, Reynolds and Gross
1990; Kirkpatrick and Ryan 1991), these benefits should be
small relative to effects of variation in resource value,
particularly if the survival and mating success of a female’s
offspring are dependent upon the larval environment (e.g.
Howard 1978b; Reaney and Backwell 2007).

Second, females could base their choice directly upon
the male phenotype if the genetic benefits offered by a male
are more critical to offspring fitness than resource value
(Pomiankowski 1988) or if male characters indicate non-
resource-based direct benefits such as the quality of
paternal care (e.g. Downhower and Brown 1980).

Third, females could use male phenotype as a cue to
resource value if contests over resources produces a
positive association between male phenotype and resource
quality (Howard 1978a; Gottlander 1987; Hoi-Leitner et al.
1995). Therefore, females could indirectly choose a high-
value resource by mating with males possessing phenotypic
indicators of greater resource-holding potential (hereafter
RHP, Parker 1974). For example, controlled field experi-
ments showed that female C. s. xanthostoma damselflies
choose to mate and oviposit at particular locations based on
the phenotype (degree of wing pigment heterogeneity) of
the resident male (Siva-Jothy 1999). Given that resident
males tend to also control better oviposition sites, females
possibly gain the direct benefits of ovipositing on a higher-
quality territory in addition to being guarded by a male that
is better able to repel harassing conspecific males (Siva-
Jothy 1999). Alternatively, if male genetic quality and
resource value are not correlated, females would have the
opportunity to choose sires independent of resources
(Conrad and Pritchard 1992). For example, female Calo-
pteryx dimidiata damselflies are able to separate mate
choice and resource choice because females can mate with
a high-quality male and then seek a superior oviposition
site elsewhere; given that they oviposit underwater and
therefore can submerge and lay eggs free from harassment
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by the resident male (Waage 1984; see also Forsyth and
Montgomerie 1987; Tsubaki and Ono 1987).

Fourth, females may use resource characteristics as a cue to
male quality. Again, if the quality of the resource-holding
male is positively correlated with resource value, and judging
resource value is more difficult than assessing male quality
(Waage 1984), females could indirectly acquire high-quality
mates by examining resources (e.g. Fincke 1992). Passive
female mate choice (Thornhill and Alcock 1983) should
provide numerous advantages to females (e.g. avoid the costs
of inter-sexual contact such as energy expenditure, physical
injury and parasite and disease transmission) if resource
value is a reliable predictor of male genetic quality.

Fifth, females could choose a breeding situation based
on some combination of male phenotype and resource
value (e.g. birds, Yasukawa 1981; fish, Thompson 1986;
mammals, Balmford et al. 1992; crustaceans, Backwell and
Passmore 1996; insects, Jennions 1998), perhaps by using a
threshold-criterion tactic of choice (Wittenberger 1983).
This would involve selectively weighting the quality of
both the male and the resource and then combining them
into a single index of suitability. Alternatively, females
could use a two-step process whereby all males are assessed
based on one component and then a subset of those are
judged on the second component (Thornhill 1983; Backwell
and Passmore 1996). In either case, females should give
priority to resource quality because of their immediate
benefits (Meoller and Jennions 2001a); hence, females
should mate with the first male encountered who meets
her minimum criteria (Wittenberger 1983).

The final hypothesis is the null model of random female
settlement (Wootton et al. 1986) or neutral-mate-choice
(Lightbody and Weatherhead 1988). Although the neutral-
mate-choice hypothesis is a null model and female choice is
random, it is not a ‘truly’ null model because neutral choice
predicts female behaviour to be optimal with respect to
maximizing fitness whereas a true null model of random
choice predicts that female settlement is not optimal
(Lightbody and Weatherhead 1988). Both models predict
that males with larger territories acquire more female mates
(i.e. harem size correlates positively with territory/resource
area) (Lightbody and Weatherhead 1988).

If females preferentially settle on the best available
resources and males with greater RHP control these
resources, then a strong positive relationship between male
RHP, resource quality and male mating success is predicted,
perhaps even reaching » = 1.0 if rank-based methods are
used (e.g. Spearman rank or Kendall tau correlation). Due
to measurement error and biological noise, perfect correlations
(r = 1.0) are, however, rare in biology even for well-
established relationships (Jennions et al. 2001; Meller and
Jennions 2002). Moreover, the inaccurate identification of
either the male trait(s) important to RHP or the resource
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characteristic sought by females will weaken the observed
strength of the relationships.

If sexually receptive females are more strongly attracted
to higher-quality resources and males with greater RHP

monopolize these resources (Fig. 1 Scenario l1a and b), then
males with larger RHP should have greater reproductive
success (Fig. 1 Scenario 1c). Many studies have investigat-
ed this hypothesis by determining whether dominant males
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Fig. 1 The importance of testing each relationship among resource-
value (RV), male resource-holding potential (RHP) as well as male
reproductive (RS) and reproductive (RS) success within a species. Each
scenario presents the possible mechanisms driving either a positive
(Scenario 1), negative (Scenario 2) or no (Scenario 3) correlation between
RV vs. RHP. Alternative hypotheses for a given relationship are presented
above figures. For example, if a positive correlation is found between RV

vs. RHP (Scenario 1a), does this mean that males with greater RHP
have greater RS because they own sites having greater RV (Scenario
1¢)? No, because although more females may visit (and potentially
mate) at sites having greater RV (Scenario 1b), females may prefer to
use the sperm of males with lower RHP (Scenario 1d). This would arise
if, perhaps, there were a trade-off among male traits selected by male-
male competition versus female mate choice
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(i.e. those whose RHP is inferred to be greater) have
increased reproductive success (e.g. Gwynne and Jamieson
1998; Kelly 2005). This is problematic because a correla-
tive estimate of a single relationship cannot reveal the
underlying mechanisms driving male reproductive success
(Fiske et al. 1998). In many cases (e.g. Kelly 2005),
concluding that males with large RHP also have higher
reproductive success implicitly assumes that the first two
statements are correct (i.e. RHP vs. RV and RV vs. MS)
(Fig. 1 Scenario la — b) and also assumes that mating
success equals reproductive success (Brown et al. 1997).
That mating success equals reproductive success is a safe
assumption (e.g. Cote and Hunte 1989); however, if intense
sexual conflict arises and females prefer to use the sperm of
males with traits unrelated to RHP then resource-defence
should breakdown (Fig. 1 Scenario 1d) (Brown et al. 1997;
Arnqgvist and Rowe 2005).

Quantifying the strength of one relationship and assum-
ing the other two to be correct does not test all relationships
directly and therefore cannot be used to infer that males
with greater RHP hold better resources or that better
resources attract more females. In other words, correlating
a single factor (e.g. male RHP) with mating or reproductive
success only explains part of the puzzle of what attracts
females to certain locations and why particular males reside
at those locations. For example, a negative relationship
between RV and male RHP from an observational field
study (e.g. Baird 1988), can be caused by a number of
factors (Fig. 1 Scenario 2): perhaps there is a stronger
female preference for either the resource or male pheno-
type, trade-offs might exist because male traits that increase
success during male combat decrease male attractiveness to
mate choosing females, or perhaps the relationship is a
product of either a misidentified resource-character or male
RHP trait. By further investigating each of the other two
relationships (RS vs. RV and RS vs. RHP; Fig. 1 Scenario
2b—e) investigators can gain a better understanding of why
males with larger RHP apparently hold poorer resources.
For example, if resource-value is negatively correlated with
reproductive success (Fig. 1 Scenario 2b) but male RHP is
positively correlated with reproductive success (Fig. 1
Scenario 2c¢), then female mate choice is likely based more
on male phenotype than resource value.

Random female settlement would be indicated by a
positive relationship between RV (i.e. territory area) vs. RS
(Fig. 1 Scenario 3c) and no relationship between RV vs.
male RHP (Fig. 1 Scenario 3a) and between RS vs. male
RHP (Fig. 1 Scenario 3b). Alternatively, the lack of
relationship in Scenarios 3a and b could be due to
misidentified traits or resource characters.

A central prediction of behavioural ecology is that male
RHP, resource quality and male reproductive success are all
positively correlated (Emlen and Oring 1977; Andersson
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1994; Brown et al. 1997; Shuster and Wade 2003).
Although many studies have supported this prediction,
other studies suggest that mating with a more dominant
male may be costly to females. For example, strong
negative relationships have been reported between male
RHP and resource-value (e.g. Baird 1988), reproductive
success and resource-value (e.g. Villalobos and Shelly
1991; Oliveira et al. 2000) and reproductive success and
male RHP (e.g. Savalli 1994a). It is clear that individual
studies inadequately describe general patterns in nature.
Here, 1 use meta-analysis to quantitatively describe the
general pattern of these relationships in animals. Although
others have qualitatively assessed the relationships between
male RHP, resource value and male reproductive success in
resource-defence animals (e.g. Baker 1983; Fitzpatrick and
Wellington 1983; Thornhill and Alcock 1983; Maher and
Lott 2000), that approach does not measure the magnitude
of the effect size nor does it give any indication as to the
sources of variation in effect sizes. I predict that the
relationships between male RHP, resource-value and repro-
ductive success should be significantly positive. In other
words, I expect that male RHP and resource-value should
explain a large amount of the variation in male reproductive
success. Additionally, I predict that male RHP and resource
value will explain more of the variation in male reproductive
success when examined experimentally, rather than by
observational studies, because variation due to confounding
variables will be eliminated in this type of study. Finally, I
also investigated whether effect sizes for the different
relationships vary among taxa and whether certain male
traits representing RHP have a stronger effect on resource-
value and reproductive success than other traits.

Materials and methods
Data sets

I searched the literature by entering the terms ‘resource
defence’, ‘resource defense’, ‘territoriality’, ‘territory’ and
‘territorial” into Web of Science (ISI). I looked for studies
reporting information on the relationship between (1) male
reproductive success and defended resource-value, (2) male
reproductive success and male resource-holding potential
and/or (3) resource-value and male resource-holding potential.
I make no claim to have included all relevant studies but there
is no immediately obvious reason why this search strategy
would not yield a representative sample of published studies.
The original authors reported a large number of metrics
for male reproductive success and included: the number of
females that either copulated, laid eggs, visited a resource
patch or associated with a male for a period of time (i.e.
harem size); number of offspring hatched, fledged or reared



Behav Ecol Sociobiol (2008) 62:855-871

859

to maturity; and pair-bond duration. Resource-value was
typically measured as the quantity of some material
required by females (e.g. number of flowers, biomass of
edible vegetation, proximity to water, degree of predation
risk, nest size). In some cases, investigators used male
‘ownership’ of a resource patch or territory as a metric of
resource-value — patches controlled by males were consid-
ered to be high-value sites. Male resource-holding potential
was defined based on weapon size (e.g. mandible, horn or
antler length), body size (e.g. weight, wing, tarsus,
pronotum or elytra length), body condition, age, traits that
signal fighting ability (e.g. colour patches or song charac-
teristics) and ‘other’ traits (e.g. experience, residency, date
of arrival on a territory). All definitions are those of the
original authors: whether the definitions of the original
authors are appropriate is not the focus of this paper. The
important point to note is that these are how the terms have
been defined and used in the literature.

Each study was classified as to whether its methodolog-
ical approach was experimental or observational. Experi-
mental studies involved manipulating either the trait
putatively responsible for defining male RHP and/or the
resource character sought by females as well as controlling
possible confounding variables (e.g. temperature, light cycle,
mating history etc). Most studies were unambiguously
classified; however, some studies did not fit the experimental
definition. These studies were classified as experimental on
the grounds that the investigator manipulated some aspect of
the study and so the study was not based on a random set of
observations. For example, Wells (1977) observed a sample
of frogs that he collected and introduced into an enclosed
pond; I classified this as ‘experimental’.

Meta-analysis

I retrieved data from the text or tables or indirectly by
measuring figures for each study. I calculated effect sizes as
Pearson product-moment correlation coefficients (Hedges
and Olkin 1985; Rosenthal 1991; Cooper and Hedges
1994) and transformed data to r using the MetaWin
software package (Rosenberg et al. 2000) if presented in
another form (e.g. #, F, x*, Mann-Whitney U). When the
means and standard deviations were available I calculated
the effect size estimate Hedge’s g, which was then trans-
formed to 7.

I followed the protocol used by others (e.g. Jennions
et al. 2001; Mpgller and Jennions 2001a; Torres-Vila and
Jennions 2005) and only briefly describe the methodology
here. First, correlation coefficients were z-transformed and
weighted by their sample size. A sample was defined as a
single test for an effect.

Samples within studies and multiple studies of a single
species lack statistical independence (Thornhill and Meller

1998); therefore, I examined results at the level of samples,
studies and species. If qualitatively similar conclusions are
reached at all three levels of analysis it is reasonable to
assume that the level of analysis is relatively unimportant.
The transformed coefficients were combined for each level
of analysis and weighted by average sample size per sample
within studies or studies within species.

When examining the effect of moderator variables (e.g.
male RHP trait-type, resource character, taxon or methodol-
ogy), [ used a single effect for each species for each moderator
variable of interest in order to maintain statistical indepen-
dence. For example, the resource-holding potential of male
pheasants, Phasianus colchicus, is influenced by weapons
(spurs), body size, signals and age and multiple effect sizes
have been calculated for some of these traits. Consequently,
a single mean effect size was calculated for each trait for this
species and these values were then used in the meta-analysis.
There were too few species having both experimental and
observational effect sizes available and so could not make
paired comparisons (cf. Torres-Vila and Jennions 2005).

Effect sizes were calculated using the mixed-effects
model which allows a true random component, in addition
to sampling error, as a source of variation in effect size
among studies (Hedges and Olkin 1985). The null
hypothesis for each analysis was that effect size equalled
zero. | tested this hypothesis by examining the 95%
confidence intervals for the mean weighted effect size;
overlap with zero would support the null hypothesis at the
0.05 «-level. MetaWin provides mean effect size and 95%
confidence intervals calculated using a bias-corrected
bootstrap approach (999 replicates). Similarly, I examined
confidence intervals to see if the mean effect size differed
significantly from 1.0. I also report the within-group
heterogeneity (Q,,) for each group of studies, assuming Q
follows a x* distribution with df = number of studies — 1.
Mean weighted effect sizes (Z,) were back-converted and
are expressed in terms of 7.

I tested whether the mean effect size differed between
groups (e.g. among taxa) by testing for significant between-
group heterogeneity (Qy) using randomisation tests based
on 1,000 replicates. Within-group heterogeneity (Q) was
calculated for groups with n, > 5. If there is no data
structure incorporated into the summary analysis (i.e. no
moderator variables) then total heterogeneity is calculated
(O1) (Rosenberg et al. 2000). T tested whether the
magnitude and direction of mean effect sizes are consistent
among the three relationships (RHP vs. RV, RHP vs. RS
and RV vs. RS) using a subset of species (n = 22) in which
all three relationships of interest have been reported in the
literature. By focusing on this subset of data I control for
the effect of species because in the original analysis
different species contribute to each of the three relation-
ships and this could, therefore, bias the overall analysis and
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subsequent interpretation. For each species there was a
single effect for each relationship. Consequently, I analyzed
these data using Cohen’s ¢ by calculating the difference in
mean effect size per relationship and then testing whether it
differs significantly from zero (Rosenthal 1994).

I calculated Rosenthal’s fail-safe number for groups with
ne > 5 to assess the robustness of my results. This estimates
the number of studies with no effect that are required to
nullify an observed statistically significant effect size at & =
0.05 (Rosenthal 1991). By convention, a conclusion is
generally considered robust if the fail-safe number exceeds
Sne + 10, where n, is the reported number of analysis units
(i.e. samples, studies or species).

The estimate of a mean weighted effect size could be
inaccurate if a publication bias exists (Rosenthal 1991; Begg
1994). This phenomenon has been much debated among
meta-analysts (e.g. Rosenthal 1991; Begg 1994; Duval and
Tweedie 2000a; Duval and Tweedie 2000b), including
evolutionary ecologists (e.g. Arnqvist and Wooster 1995;
Palmer 1999; Jennions and Mpgller 2002; Kotiaho and
Tomkins 2002; Koricheva 2003; Jennions et al. 2004,
Tomkins and Kotiaho 2004; Meller et al. 2005). The only
direct method to address this problem is to compare
published and unpublished studies. Several recent studies
(Mgller and Thornhill 1998; Jennions et al. 2001; Mgller and
Jennions 2001a; Koricheva 2003; Magller et al. 2005) have
done this and, in each case, the effect sizes of the two
categories of studies did not differ. I did not have access to
unpublished data so I used two indirect methods to address
this issue.

First, I calculated the Begg-Mazumdar correlation
between standardized effect size and study sample size
(r-bias). This statistic should be interpreted with caution,
however, because it has low statistical power with sample
sizes (n.) fewer than 25 (Meller and Jennions 2001b).

Second, I used the iterative ‘trim and fill’ method of
Duval and Tweedie (2000a, b) to estimate the number of
‘missing’ studies based on a funnel plot of the data (i.e.
effect size vs. sample size) and then calculated the mean
effect if these hypothetical ‘missing’ studies are included.
This procedure is based on two assumptions: there should
be a symmetric distribution of observed effect sizes around
the ‘true’ effect size if publication bias is absent and the
most extreme results, typically those with low sample size
and high variance, have not been published.

Third, I tested whether there was a correlation between
date of publication and effect size.

Results

As species are the focus of this review and all three levels
of analysis (i.e. samples, studies and species) gave similar
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results, I present and discuss only those findings from the
species-level of analysis. The results from the sample- and
study-levels of analysis, as well as raw data, are provided as
Electronic Supplemental Material (S1 to S4).

Male resource-holding potential vs. resource-value

For the 53 species (from n = 63 studies), the weighted
average effect size of » = 0.37 was significantly greater than
zero and the variation in effect size was no more than
expected due to sampling error (Table 1). There was no
evidence of publication bias (Table 1; Fig. 2a) and the
addition of one putative missing study resulted in a slightly
reduced corrected mean effect size of r =0.35 (95% C.L:
0.27 — 0.43). The mean effect size for experimental studies
(r = 0.51, 95% CI: 0.35 - 0.68) was larger than for
observational studies (» = 0.35, 95% CI: 0.24 — 0.44) but
the difference was not significant (Q, = 2.44, df = 1, P =
0.14). For each of the six types of male traits used as
indices of RHP, individuals with larger values controlled
resources of greater value (Table 1). The strength of these
relationships was remarkably consistent for the different
types of traits (Q, = 0.58, df =5, P=0.99). An analysis by
taxon (each species contributing one effect size) showed
that mean weighted effect size was significantly greater
than zero for all taxa but fish (Table 1). There was also no
difference in effect sizes among taxa (Q, = 0.96, df = 2,
P =0.59; only tested using taxa with n, >5 species).

Resource-value vs. male reproductive success

The weighted average effect size for the 40 species of r =
45 (from n = 45 studies) was significantly greater than zero
but the among-effect size variation was statistically signif-
icant (Table 2). This significant heterogeneity was caused
by a single large effect size for the walnut fly Rhagoletis
boycei (r = 0.99; Papaj 1994). Its removal considerably
lowered the observed heterogeneity (Q,, = 51.2, df = 38,
P = 0.05) but did not change the original conclusion
(recalculated r = 0.41, 95% CI: 0.32-0.51, n = 39). Partial
correlations were performed for three species with a mean
effect size of = 0.17 (95% CI: 0.05 — 0.30). A trim and fill
analysis suggested that six studies were missing (see also
Fig. 2b) and the corrected mean effect size of » = 0.34 (95%
CI: 0.27 — 0.41) was smaller but still significantly greater
than zero. The mean effect sizes for observational (» = 0.45,
95% CI: 0.31 - 0.59) and experimental studies (r = 0.44,
95% CI: 0.25 — 0.61) did not differ significantly (Q, =
0.004, df =1, P = 0.95). The significant variation in effect
size was not explained by differences between estimates
based on the two main categories of resource value (quality
or size) (O, = 0.10, df =1, P=0.81). Mean effect sizes for
estimates based on territory quality, size and ownership
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Table 1 Summary of mean effect sizes (Pearson’s 7 with 95% bias-corrected bootstrapped confidence intervals) for the relationship between
resource-holding potential (RHP) and resource-value (RV) at the species level of analysis

Effect size Effect size heterogeneity®

e r 95% CI Ow df P Fail-safe no. r-bias
All species 53 0.37 0.28-0.46 49.2° 52 0.58 933°¢ -0.20
Weapon 7 0.29 0.17-0.40 52 6 0.51 39 0.0
Signal 13 0.31 0.22-0.43 11.8 12 0.46 126° 0.0
Age 5 0.38 0.03-0.70 2.7 4 0.61 0 -0.1
Body size 38 0.37 0.25-0.47 352 37 0.55 423°¢ -0.25
Body condition 8 0.39 0.26-0.55 6.4 7 0.49 45 -0.36
Other 5 0.33 0.08-0.57 4.5 4 0.35 3 —-0.21
Insect 25 0.36 0.24-0.47 19.1 24 0.75 191° -0.27
Bird 10 0.41 0.22-0.58 9.5 9 0.39 36 —-0.07
Fish 8 0.23 —-0.12-0.47 5.5 7 0.59 0 —0.48
Mammal 3 0.22 0.19-0.24 - - - - -
Crustacean 2 0.14 0.04-0.24 - - - - -
Amphibian 4 0.68 0.50-0.86 - - - - -
Reptile 1 0.80 - - - - - -

Data were grouped on the basis of RHP trait (e.g. weapon, signal etc.) and higher taxa (e.g. insect, bird etc). Within-group heterogeneity in effect
sizes (Qy), Rosenthal’s fail-safe number, the Begg—Mazumdar correlation between standardized effect size and sample size (r-bias) and the

number of effect sizes (n.) are provided

?Does not include taxa with n, < 5

° Or because no data structure

¢ Rosenthal’s fail-safe number greater than 5n, + 10

were all significantly greater than zero, but only those for
resource quality exhibited significantly greater variation
than expected due to sampling error (Table 2).

Males holding higher quality resources had significantly
greater reproductive success in all major taxa except
Crustacea (Table 2). There was no significant difference
in the mean effect size among taxa with n, > 5 (Q, = 0.66,
df=2, P=0.85). There was high heterogeneity within each
taxa (Table 2) but this was due to a single outlier in each
taxa. Removal of these outliers removed the observed
heterogeneity within each taxon (Table 2).

Male resource-holding potential vs. male reproductive
success

The weighted average effect size of » = 0.37 (from n = 69
studies) was significantly greater than zero and the variation
among effect sizes was not statistically significant (Table 3).
Partial correlations were performed for four species and the
mean effect size was not significantly different from zero
(r =031, 95% CI: -0.14 — 63). There was no publication
bias (Table 3; Fig. 2¢). A “Trim and Fill” analysis
suggested that there were 10 “missing” studies and their
addition actually resulted in a larger corrected mean effect
size of r=0.47 (95% CI: 0.37 — 0.55). The mean effect size
for experimental studies (» = 0.63, 95% CI: 0.30 — 0.88)
was significantly greater than that for observational studies
(r =034, 95% CI: 0.24 — 043; 0, = 683, df =1, P =
0.009). The type of male trait used to estimate RHP did not

explain a significant amount of variation in effect sizes
(O, =24, df =4, P=0.66; only traits with n, > 5). When
analysed by trait type, only those categorized as ‘other’ has
a statistically non-significant mean effect size (Table 3).
Similarly, taxon did not explain a significant amount of
variation in effect sizes (Q, = 1.03, df = 2, P = 0.60; only
taxa with n, > 5).

Comparison of species-level effect sizes

In line with the predictions of Scenario 1 (Fig. 1) there
was no difference among mean global effect sizes calculat-
ed for each of the three relationships (RHP vs. RV: »=0.37,
RV vs. RS: » = 0.45 and RHP vs. RS: » = 0.37; O, = 1.8,
df=2, P=047).

Effect sizes for all three relationships were available for 22
species (Table 4: Fig. 3). An analysis of this subset again
supports the predictions of Scenario 1 (Fig. 1) because the
mean effect size did not differ among the three relationships
(RHP vs. RS - RV vs. RS, Cohen’s ¢ = 0.012, 95% CI: -
0.13 — 0.15; RHP vs. RS - RHP vs. RV, ¢ = 0.11, -0.04 —
0.25; RV vs. RS - RHP vs. RV, ¢ = 0.11, -0.03 — 0.26).
However, inspection of an interaction plot (Fig. 3) suggests
an interaction between species and relationship-type; sug-
gesting that Scenarios 2 and 3 (Fig. 1) can better explain the
interrelationships within some species than Scenario 1.

The three relationships also did not differ when
considering only effect sizes from experimental studies
(RHP vs. RS—RV vs. RS, Cohen’s ¢ = 0.28, 95% CI: -0.58 —
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<« Fig. 2 The relationship between study sample size (N) and effect size (r)
at the species-level of analysis for the relationship between a resource-
holding potential (RHP) and resource-value (RV), b resource-value
(RV) and male reproductive success (RS) and ¢ resource-holding
potential (RHP) and male reproductive success (RS). The dashed line
represents an effect size of zero and the solid line is for the observed
weighted mean effect size

0.96; RHP vs. RS — RHP vs. RV, ¢ = 0.18, -0.54 — 0.77; RV
vs. RS — RHP vs. RV, ¢ = 0.10, -0.58 — 0.29).

Discussion

A long-standing hypothesis in behavioural ecology posits
that males with greater resource-holding potential control
resource sites or territories deemed more valuable by
sexually-receptive females and, thereby, males controlling
such sites accrue greater reproductive success (Emlen and
Oring 1977; Andersson 1994; Brown et al. 1997; Shuster
and Wade 2003) (see Fig. 1 Scenario 1a-c). This hypothesis
has historically been investigated using three separate but
non-mutually exclusive relationships (RHP vs. RV, RV vs.
RS and RHP vs. RS). My meta-analysis supports the afore-
mentioned hypothesis on four grounds. First, the global
mean effect size for each relationship at the species-
level (observational and experimental studies combined)
were of similar magnitude (» = 0.37, 0.45 and 0.37) and
all significantly greater than zero. Second, these global
effect sizes were not spurious as experimental studies
showed a significant positive effect of male RHP and RV
on male reproductive success. However, in only one case
(RHP vs. RS) did the mean effect size based on experi-
ments significantly outweigh the mean effect based on
observations. Third, partial correlations showed that males
with greater RHP had higher reproductive success while
statistically controlling for resource-value and males control-
ling better resources had greater reproductive success while
statistically controlling for male RHP. Finally, an analysis of a
subset of 22 species for which all relationships have been
quantified showed that all three effect sizes were of similar
magnitude and, on average, significantly positive.

The interaction plot suggests that the magnitude and sign
of a particular relationship can differ widely among species
(Fig. 3). For example, male sand tilefish, Malacanthus
plumieri, with greater RHP do not hold better resources nor
do they gain greater reproductive success; however, sites of
greater resource-value host males with higher reproductive
success (see Fig. 1 Scenarios 2a, d and e). This result
suggests that either resource-value is more important to
female sand tilefish than male phenotype or perhaps, more
importantly, researchers have incorrectly identified the traits
determining RHP (see below). In contrast, male yellow-
shouldered widowbirds, Euplectes macrourus, with greater
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Table 2 Summary statistics for the relationship between resource-value (RV) and reproductive success (RS) at the species level of analysis

Effect size

Effect size heterogeneity®

e r 95% CI Ow df P Fail safe no. r-bias
All species 40 0.45 0.34-0.55 79.6° 39 <0.001 1104¢ -0.27
Quality 29 0.42 0.30-0.55 75.1 28 <0.001 712°¢ -0.36
Size 19 0.39 0.17-0.58 15.1 18 0.66 49 -0.08
Ownership 2 0.31 0.25-0.35 - - - - -
Insect 14 0.50 0.36-0.69 51.6 13 <0.001¢ 287°¢ -0.39
Bird 10 0.44 0.20-0.68 84.8 9 <0.001°¢ 234°¢ -0.15
Fish 7 0.41 0.19-0.60 12.8 6 0.03° 42 —0.14
Mammal 4 0.38 0.20-0.57 - - - - -
Crustacean 2 0.006 -0.15-0.25 - - - - -
Amphibian 2 0.58 0.51-0.64 - - - - -
Reptile 1 0.68 - - - - - -

See Table 1 for description of column headings
?Does not include taxa with n, < 5

O because no data structure

“Rosenthal’s fail-safe number greater than 5n, + 10

9Removal of outlier (r = 0.99, Rhagoletis boycei): Q,, = 14.4, df = 12, P=0.28
°Removal of outlier (r = —0.05, Euplectes macrourus): Q,, = 6.1, df = 8, P=0.63
fRemoval of outlier (r = 0.05, Pomatoschistus minutus): Qy, = 3.6, df = 4, P=0.46

RHP have greater reproductive success. It appears though
that higher-RHP males do not necessarily hold better
territories nor do more-valuable territories increase male
mating success (Savalli 1994a, b). Thus, female E.
macrourus may choose male phenotype over resource
characteristics. Alternatively, the resource characteristic
sought by females in this species may have been inaccu-
rately identified by the investigators (see below). Unfortu-

nately, few of the effect sizes listed for the subset of 22 species
were acquired experimentally (Table 4). By increasing our
use of an experimental approach in investigations of
resource-defence species we will not only more accurately
identify what phenotypic traits and resource characteristics
are important to male reproductive success but also better
estimate the size of the effect these traits and characters have
on male fitness (see also Candolin 2003).

Table 3 Summary statistics for the relationship between resource—holding potential (RHP) and reproductive success (RS) at the species level of

analysis

Effect size

Effect size heterogeneity®

ne r 95% CI Ow df P Fail-safe no. r-bias
All species 52 0.37 0.27-0.46 60.2° 51 0.18 951°¢ -0.26
Weapon 5 0.32 0.28-0.35 0.62 4 0.96 57¢ -0.20
Signal 21 0.43 0.28-0.58 25.1 20 0.20 159°¢ -0.003
Age 8 0.24 0.05-0.42 4.7 7 0.69 3 —-0.18
Body size 38 0.30 0.19-0.41 359 37 0.52 296° -0.28
Body condition 4 0.49 0.14-0.79 - - - - -
Other 5 0.33 —0.08-0.59 3.8 4 0.44 0 0.60
Insect 25 0.39 0.25-0.54 31.2 24 0.15 190° -0.48"
Bird 12 0.27 0.10-0.42 8.5 11 0.67 16 0.48
Fish 7 0.42 0.14-0.65 6.1 6 0.41 12 —0.64
Mammal 3 0.64 0.43-0.77 - - - -
Crustacean 2 0.10 0.06-0.16 - - - -
Amphibian 3 0.32 0.14-0.43 - - - -

See Table 1 for description of column headings

?Does not include taxa with n, < 5

° Or because no data structure

°Rosenthal’s fail-safe number greater than 5n, + 10

" P<0.05
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Table 4 Effect sizes (r) for each of three relationships for the subset of species in which all three relationships have been investigated

Species Taxon RHP vs. RV RHP vs. RS RV vs. RS
Acrocephalus arundinaceus Bird 0.374 0.302 0.340°
Anthidium manicatum® Insect 0.350 0.314 0.290
Anthidium palliventre® Insect 0.170 0.251 0.095
Anthidium porterae® Insect 0.483 0.486 0.002
Bothus poda® Fish 0.700 0.840 0.148
Euplectes macrourus® Bird 0.115° —-0.044° -0.054
Ficedula hypoleuca Bird 0.158° 0.078¢ 0.543
Hemideina crassidens® Insect 0.500° 0.344° 0.655°
Kobus vardoni® Mammal 0.243 0.681 0.291
Malacanthus plumieri® Fish —0.671 —0.180 0.580
Megaloprepus coerulatus® Insect 0.528 0.173 0.384
Nannophya pygmaea® Insects -0.262 0.517 0.589
Neacoryphus bicrucis Insect 0.116 0.382 0.814
Notobitus meleagris® Insect 0.257 0.480 0.379
Ophioblennius atlanticus® Fish 0.222 0.578 0.202
Phasianus colchicus® Bird 0.156° 0.302 0.720
Pomatoschistus minutus Fish 0.506° 0.485° 0.053
Promerops cafer* Bird 0.160 -0.254 0.617
Rana catesbeiana® Amphibian 0.509 0.400 0.514
Rana clamitans® Amphibian 0.625° 0.430° 0.638°
Troglodytes troglodytes® Bird 0.330 0.497¢ 0.540
Parablennius sanguinolentus parvicornis® Fish 0.437 0.678 -0.35

# All three relationships reported from single study (i.e. same date and location but not necessarily same publication)
¢ Experimental effect size contributed to overall mean effect size

Trait identification and explained variation

The mean species-level effect sizes reported here were
about twice as large as those typically reported for

Fig. 3 An interaction plot of
effect size (r) for the relationship
between 1) male resource hold-

ing potential and resource value,
2) male resource holding poten-
tial and reproductive success
and 3) resource value and re-
productive success for each 22
species. See Table 4 for the taxa
to which each species belongs

@ Springer

evolutionary ecological studies (» = 0.18 - 0.193, Moller
and Jennions 2002). Although the mean effect size for RHP
vs. RVand RHP vs. RS were both = 0.37, male RHP traits
only account for 14% of variation among males in the
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quality of the resource held and the reproductive success
they acquired. The amount of explained variation was only
marginally greater for RV vs. RS at 20%. Thus, in order to
detect a significant relationship in a single study between,
for example male RHP and resource-value at the 0.05 o-
level with 80% power, a minimum sample size of 52 is
required. Such a sample size is larger than those typically
used to investigate this relationship (Electronic Supplemental
Material S2).

Contrary to prediction, only RHP vs. RS displayed a
significantly larger average effect size for experimental
studies compared with observational ones. This result is
most likely due to our greater ability to identify and
experimentally manipulate male traits that signal RHP
compared with those representing resource quality; partic-
ularly, if resource quality is determined by something
difficult to quantify, such as the greenness of the grass in
a patch, for example. Alternatively, perhaps male RHP
simply has a stronger effect on male reproductive success
than resource quality. Perhaps our ability to identify, and
then experimentally manipulate, resource quality will
improve as our methods and techniques improve. For
example, investigators are now able to, with relative ease,
biochemically assay the nutritional quality of ingested
materials (Heimpel et al. 2004), conduct remote video
surveillance (Stewart et al. 1997) as well as better follow
the movements of very small animals (e.g. crickets and
dragonflies) with radiotelemetric devices (Lorch and
Gwynne 2000). Consequently, our ability to unlock many
of the secrets of an animal’s life is continually improving
and with that our ability to experimentally manipulate
factors putatively important to male fitness.

Both the identity of the species used and the number of
taxa upon which each effect size is based differed for each
relationship. This could be a problem if, for example,
insects tend to have a stronger relationship for RHP vs. RS
and are over-represented in estimates of this particular
relationship. Insects and birds dominated each of three
relationships examined in this meta-analysis. For example,
insects account for 47%, 48% and 37% of the species in the
calculation of RHP vs. RV, RHP vs. RS and RV vs. RS,
respectively. Fewer studies were available for mammals,
fish, crustaceans, amphibians or reptiles.

That the mean effect sizes reported here were all
relatively larger than those typically found in evolutionary
ecological studies and significantly positive is partly due to
researchers having selected a priori species that they
believed to have a resource-defence based mating system.
In other words, studies are typically conducted on species
in which we know males defend resources etc. so a positive
effect should come as no surprise. This is not always the
case, however. For example, Christy and Schober (1994)
did not support their hypothesis of resource-defence in a

study on the fiddler crab Uca beebei. The paucity of
published negative results at the sample- and study-level
further supports the notion that investigators are not blindly
testing whether an animal is territorial.

Four studies in my meta-analysis reported r~ 1.0
(Hughes and Hughes 1985; Papaj 1994; Pryke and
Andersson 2002; Pryke et al. 2002). Effect sizes of this
magnitude are not the norm, particularly in field studies.
Instead effect sizes, as evidenced in this meta-analysis, are
often significantly greater than zero but far less than one
because accurately identifying traits representing RHP or
resource-value is difficult, measurement error is high and
biological noise reduces the strength of the observed signal.
I will address each factor below.

Investigators rarely know with high certainty which male
trait(s) determine RHP or which characteristic defines the
value of a territory for a given species, particularly when
beginning research on a novel species. Instead, researchers
typically correlate many traits putatively important to RHP
with several different measures of territory quality or male
reproductive success. Not surprisingly then, many traits
turn out to be unimportant and consequently have a weak
association with the type of resource held or with
reproductive success. Because meta-analysis requires the
inclusion of all relevant effect size estimates from each
study, regardless of statistical significance, mean effect
sizes tend to be underestimates. For example, although
Pryke et al. (2002) reported a strong effect of collar colour
(the determinant of male RHP) on territory size (» ~ 1.0, my
calculation) in the red-collared widowbird, Euplectes
ardens, the mean effect size for RHP vs. RV in this species
was nearly halved at » = 0.52 because of the inclusion in
their analysis of some unimportant traits such as tail
asymmetry and culmen length (see Andersson et al.
2002). This begs the interesting question as to whether the
traits identified a posteriori as being important would be so
in a replicate study (see Kelly 2006a), or was it simply by
chance that this particular trait came out strongly in a large
correlation matrix?

The significant heterogeneity among effect sizes ob-
served for RV vs. RS is also likely to reflect our inability to
target the resource characteristic(s) important in determin-
ing its value to females. Our ability to identify important
traits does not appear to have improved with time, as there
was no relationship between publication date and effect size
(as observed in other biological relationships). I note that an
improvement over time in how accurately we identify
important traits does not necessarily have to be confined to
one’s own study species — investigators can heed the
lessons learnt by those investigating organisms with similar
morphology and/or behaviour. For example, in the mega-
chilid bee Anthidium manicatum, Severinghaus et al. (1981)
tested and supported the hypothesis that male mating
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success is dependent upon the number of flowers in a
territory. This hypothesis was raised in an earlier study by
Alcock et al. (1977) on the congeneric A. maculosum.
Similarly effect size could increase with date of publication
if investigators improve their knowledge of which resource/
territory characteristics are important to females as well as
increase their accuracy in measuring mating success (e.g.
through video surveillance of resource sites).

One way to get around the problem of underestimating
the effect of single traits is to adopt a multivariate approach
(e.g. principal components analysis, PCA) thereby permitting
the reduction of several important and related traits to a
single variable. Such an approach would be particularly
beneficial if several different trait types (e.g. behavioural and
structural) worked in conjunction to establish RHP. No study
reported in this meta-analysis used PCA to reduce different
types of traits into one RHP variable. More common, but still
found in only four studies (Lebas 2001; Andersson et al.
2002; Forstmeier 2002; Pryke and Andersson 2003a, b), was
the use of PCA to distil several measures of one trait-type
(e.g. structural) to a single variable representing, for
example, body size (e.g. tarsus, culmen and wing length in
the red-shouldered widowbird Euplectes axillaris, Pryke and
Andersson 2003a, b).

Reducing several traits to a principal component would
also be beneficial in situations where male-male competi-
tion and female mate choice operate differently upon a trait
(s). For example, Moore (1990) showed that in Libellula
luctuosa male-male competition selects directionally for
larger body size while there is stabilizing intersexual
selection for males of intermediate body size but with
increased wing pigmentation. Therefore, in species where
this type of situation seems likely to arise it would be
prudent to measure several traits representing body size
(e.g. thorax width, wing length) and traits known to
influence female mate choice (e.g. area of wing pigmentation,
colour intensity), and then reduce these to two components
representing traits important in intra- and inter-sexual
selection, respectively.

Effect sizes larger than » = 0.30 are rare in behavioural
ecology, even for well-established relationships like those
between sexually selected traits and reproductive success
(Jennions et al. 2001; Mgller and Jennions 2002). Several
authors (e.g. Gontard-Danek and Meller 1999; Jennions
et al. 2001) argue that low observed values are due to a
high degree of noise and stochastic variation affecting
biological relationships. For example, females may have
strong mate preferences that might not be realized because
preferred males are unavailable in a particular site or year,
or because other females have already attached themselves
to these males (Jennions et al. 2001). The extent to which
noise contributes to diminishing an effect size estimate can
be quantified experimentally (Gontard-Danek and Meller
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1999), in the laboratory if possible, by exactly replicating
the experiment with a different group of animals each time
(see Kelly 2006a). If effect sizes of » = 0.37 — 0.45 are the
best we can achieve for well-established relationships in
intensely-studied organisms, like those measured here, it is
not surprising we typically find small effect sizes in
evolutionary ecology studies (Moller and Jennions 2002).

I conclude by suggesting that an examination of the
effect sizes generated in this meta-analysis can provide an
index that allows us to explore how well we know our
study species, within the constraints imposed by unac-
countable sources of variation.

Effect size by taxon

My results show that, in general, males with greater RHP
own better territories. This effect was strongest (and
significant) for insects, birds and amphibians but not so
for fishes. The lack of a strong effect in fishes may stem
from the fact that contests for territories are often settled
based on residency. For example, Jones (1981) showed that
male-male fights in Pseudolabrus celidotus wrasses are
won by the resident male. Therefore, although female
choice is based on territory quality, stochastic processes —
random settlement — ultimately determine male reproduc-
tive success. Perhaps this is a general phenomenon among
fishes, or at least among marine teleosts living on coral
reefs (Nijman and Heuts 2000). Similarly, males with larger
RHP accrued greater reproductive success overall but this
effect was strongest (and significant) for insects, birds and
amphibians.

Traits representing male dominance and resource quality

Among the studies I examined, body size was the most
common trait studied by investigators as a predictor of male
RHP, followed by signals (e.g. song repertoire size, tail
length), weaponry, male age, body condition and ‘other’
(e.g. arrival date). That traits representing male RHP
accounted for only 14% of the variation in resource-value
and reproductive success, respectively, suggests that inves-
tigators may be misidentifying the relevant traits, or that
factors other than phenotype, are important for controlling
resources and accruing reproductive success. For example,
arrival date may dictate male reproductive success. In birds,
earlier-arriving individuals often acquire better territories
and phenotypic traits, such as body size, need not be
correlated with time of arrival (e.g. Hasselquist 1998).

All six types of RHP-traits showed a strong effect on a
male’s ability to hold high-value resources with both older
and better-conditioned males holding better resources. That
males in better condition are able to hold a better resource
is understandable given competition for territories is often
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energetically demanding. The apparent success of older
males is more difficult to explain; perhaps correlates of age,
such as body size, are the actual causal factors responsible
for the observed relationships (Brooks and Kemp 2001).

Males that accrue greater reproductive success tend to be
in better condition or have greater signal value. Conversely,
male age exhibited the weakest effect on reproductive
success. This result was unexpected given that older
animals in some taxa (e.g. mammals) tend to be larger
and larger animals, which have greater RHP, are often
found to have greater reproductive success (Andersson
1994). Contrary to this notion, however, is a growing body
of empirical evidence showing that older animals may be
less preferred by females (e.g. Hunt et al. 2004) and/
or suffer in male-male competition (e.g. Forsyth and
Montgomerie 1987), possibly due to reduced energy stores
(e.g. Marden and Waage 1990).

For the subset of species discussed above, the observed
intraspecific differences in effect size and sign among the
three relationships could be real or they could reflect
inaccurate identification of the relevant trait(s). Moreover,
because many of the studies used in this meta-analysis
relied on natural phenotypic variation and were correlative,
several confounding factors were not controlled. For
example, population demography (e.g. male density, Borgia
1980; McLain 1992; operational sex ratio, Blanckenhorn
et al. 2003), individual state (e.g. energy levels, Marden and
Waage 1990; Plaistow and Siva-Jothy 1996), local envi-
ronmental conditions (e.g. temperature, Switzer 2002) and
ecological factors (e.g. level of predation risk, Gwynne and
O’Neill 1980) are all known to influence a male’s tenure on
a territory. The best way to combat problems associated
with confounding factors and misidentification of important
traits is to systematically manipulate different male traits
and resource characters and then test which has the greatest
effect on male reproductive success. Implementing this
approach, however, is not always possible if working on a
large animal or one that requires large territories. Perhaps,
the best we can do is to quantify the relationship of interest
in several populations throughout the breeding season to
assess the generality of the relationship (Kelly 2006a).

Ultimately, investigators need to test all three relation-
ships within the same species in order to appropriately
determine the underlying mechanism responsible for a
male’s reproductive success. For example, that a male with
apparently large RHP has high mating success does not
necessarily mean that he controls more-valuable resources —
females may prefer males with larger trait values indepen-
dent of resource characteristics — nor does it mean that he
will have greater reproductive success if females use the
sperm of other males (Fig. 1) (Candolin 2003). Testing the
strength of all three relationships, however, will compound
the problems associated with testing a single relationship,

particularly because factors affecting male tenure vary
spatiotemporally. To reduce error associated with differ-
ences in location and time of year, researchers should test
the three relationships concurrently at the same site. In the
seed bug Neacoryphus bicrucis, for example, the advantage
of male body size in defending territories and acquiring
mates decreases as population density increases from early-
(mid-April) to mid-season (early May) (McLain 1992). At
higher densities, (i.e. early May) the otherwise positive
correlation between resource value and male body size
(RHP) breaks down with males eventually abandoning
resource-defence and entering into scramble competition.
Therefore, if the three main relationships examined in the
present meta-analysis were studied at different times of the
year in N. bicrucis an inaccurate picture could emerge
regarding the importance of male body size and resource
value on male mating success. In the rare case that an
investigator has tested all three relationships within a
species, they have apparently recognized the potential
confounds and examined all relationships concurrently at
the same location (18/22 species, Table 4). Very few studies
have experimentally tested the interrelationships of male
RHP, resource-value and male mating or reproductive
success in the laboratory or used partial correlations to
statistically account for potentially confounding factors
(Lindstrom 1992; Kelly 2006b).

In conclusion, (i) investigators must quantify within a
species each of the three relationships addressed in this
meta-analysis and test the alternative hypotheses outlined in
Fig. 1 Scenario 1-3; (ii) studies require larger sample sizes
(N > 52) to detect statistically significant relationships; (iii)
once the putatively important trait(s) has been identified (by
using a correlative approach and relying upon natural
phenotypic variation), manipulative experiments with proper
controls and reciprocal treatments (i.e. good male on poor
resource and vice versa) should be employed, preferably in
the laboratory in order to illuminate the independent effects
of male phenotypic traits and resource characteristics on
male reproductive success (at the very least we should
statistically control for confounding variables (i.e. resource
characteristics and male traits) by using analysis of covari-
ance or partial correlations); (iv) investigators must control
for spatiotemporal factors in field studies by testing each
relationship at the same time and place; (v) investigators
should quantify the degree to which biological noise contrib-
utes to relationships by conducting experiments (sensu
Gontard-Danek and Meller 1999); (vi) we need to expand
the list of taxa used to address the above hypotheses, in
particular, we need more studies on fishes, reptiles, amphib-
ians, crustaceans and mammals; and finally (vii) because we
are ultimately interested in the benefits to male fitness of
holding a particular resource or possessing particular traits,
we need accurate measures of mating success.
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