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Network analysis has driven key developments in research on animal behaviour by providing quanti-
tative methods to study the social structures of animal groups and populations. A recent formalism,
known as multilayer network analysis, has advanced the study of multifaceted networked systems in
many disciplines. It offers novel ways to study and quantify animal behaviour through connected ‘layers’
of interactions. In this article, we review common questions in animal behaviour that can be studied
using a multilayer approach, and we link these questions to specific analyses. We outline the types of
behavioural data and questions that may be suitable to study using multilayer network analysis. We
detail several multilayer methods, which can provide new insights into questions about animal sociality
at individual, group, population and evolutionary levels of organization. We give examples for how to
implement multilayer methods to demonstrate how taking a multilayer approach can alter inferences
about social structure and the positions of individuals within such a structure. Finally, we discuss caveats
to undertaking multilayer network analysis in the study of animal social networks, and we call attention
to methodological challenges for the application of these approaches. Our aim is to instigate the study of
new questions about animal sociality using the new toolbox of multilayer network analysis.
© 2019 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
‘MULTIDIMENSIONALITY’ OF ANIMAL SOCIAL BEHAVIOUR

Sociality is widespread in animals, and it has a pervasive impact
on behavioural, evolutionary and ecological processes, such as
social learning and disease spread (Allen, Weinrich, Hoppitt, &
Rendell, 2013; Aplin et al., 2014; Silk, Alberts, & Altmann, 2003;
White, Forester, & Craft, 2017). The structure and dynamics of
animal societies emerge from interactions between and among
individuals (Hinde, 1976; Krause, Croft, & James, 2007; Pinter-
Wollman et al., 2014). These interactions are typically ‘multidi-
mensional’, as they occur across different social contexts (e.g.
affiliation, agonistic and feeding), connect different types of
individuals (e.g. maleemale, femaleefemale or maleefemale in-
teractions) and/or vary spatially and temporally. Considering such
multidimensionality is crucial for thoroughly understanding the
structure of animal social systems (Barrett, Henzi,& Lusseau, 2012).
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Network approaches for studying the social behaviour of ani-
mals have been instrumental in quantifying how sociality in-
fluences ecological and evolutionary processes (Krause et al., 2007;
Krause, James, Franks,& Croft, 2015; Kurvers, Krause, Croft, Wilson,
& Wolf, 2014; Pinter-Wollman et al., 2014; Sih, Hanser, & McHugh,
2009; Sueur, Jacobs, Amblard, Petit,& King, 2011;Webber& Vander
Wal, 2018; Wey, Blumstein, Shen, & Jord�an, 2008). In animal social
networks, nodes (also called ‘vertices’) typically represent indi-
vidual animals; and edges (also called ‘links’ or ‘ties’) often repre-
sent pairwise interactions (e.g. behaviours, such as grooming, in
which two individuals engage) or associations (e.g. spatiotemporal
proximity or shared group memberships) between these in-
dividuals. Such a network representation is a simplified depiction
of a much more intricate, multifaceted system. A social system can
include different types of interactions, with different biological
meanings (e.g. cooperative or competitive), which standard
network approaches often do not take into account, or they do so by
analysing networks of different edge types separately (Gazda, Iyer,
Killingback, Connor, & Brault, 2015b). Typical approaches ignore
interdependencies that may exist between different types of in-
teractions and between different subsystems (Barrett et al., 2012;
evier Ltd. All rights reserved.
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Beisner, Jin, Fushing, & McCowan, 2015). Furthermore, networks
are often studied as snapshots or aggregations of processes that
change over time, but dynamics can play a major role in animal
behaviour (Blonder, Wey, Dornhaus, James, & Sih, 2012; Farine,
2018; Wey et al., 2008; Wilson et al., 2014). As we highlighted
recently (Silk, Finn, Porter, & Pinter-Wollman, 2018), advances in
multilayer network analysis provide opportunities to analyse the
multifaceted nature of animal behaviour, to ask questions about
links between social dynamics across biological scales, and to
provide new views on broad ecological and evolutionary processes.
In this paper, we introduce the new mathematical formalism of
multilayer network analysis to researchers in animal behaviour.
This formalism provides a common vocabulary to describe,
compare and contrast multilayer network methodologies. Our goal
is to review research areas and questions in animal behaviour that
are amenable to multilayer network analysis, and we link specific
analyses to these questions (see Table 1). We describe different
types of multilayer networks and detail how they can encode ani-
mal data. We also review several questions and hypotheses, across
social scales, that multilayer network analysis can help investigate.
We summarize key questions and provide a guide to available
methods and software for multilayer network analysis in Table 1.
We present examples to illustrate our ideas, and we consider some
of the requirements and caveats of multilayer network analysis as a
tool to study animal social behaviour. We also discuss several di-
rections for future work.

What Are Multilayer Networks?

Multilayer networks are assemblages of distinct network ‘layers’
that are connected (and hence coupled) to each other via interlayer
edges (Boccaletti et al., 2014; Kivel€a et al., 2014). A multilayer
network can include more than one ‘stack’ of layers, and each such
facet of layering is called an ‘aspect’. For instance, one aspect of a
multilayer network can encode temporal dynamics and another
aspect can represent types of social interactions (Fig. 1,
Supplementary Material 1).

The recent formalism ofmultilayer networks has opened up new
ways to study multifaceted networked systems (Boccaletti et al.,
2014; Kivel€a et al., 2014). The application of multilayer networks
to questions in animal behaviour is still in its infancy, butmultilayer
network analysis has facilitated substantial advances over mono-
layer (i.e. single-layer) network analysis in many other fields (Aleta
& Moreno, 2019; Kivel€a et al., 2014). For example, multilayer
network approaches have made it possible to identify important
nodes that are not considered central in a monolayer network (De
Domenico, Sol�e-Ribalta, Omodei, G�omez, & Arenas, 2015). Multi-
layer approaches applied to studying information spread on Twitter
(where, e.g. one can use different layers to represent ‘tweets’,
‘retweets’ and ‘mentions’) have uncovered information spreaders
who have a disproportionate impact on social groups but were
overlooked in prior monolayer investigations (Al-Garadi, Varathan,
Ravana, Ahmed, & Chang, 2016). Multilayer modelling of trans-
portation systems has improved investigations of congestion and
efficiency of transportation. For example, each layer may be a
different airline (Cardillo et al., 2013) or a different form of trans-
portation in a city (Chodrow, al-Awwad, Jiang, & Gonz�alez, 2016;
Gallotti & Barthelemy, 2015; Strano, Shai, Dobson, & Barthelemy,
2015). Modelling dynamical processes on multilayer networks
can result in qualitatively different outcomes compared to model-
ling dynamics on aggregate representations of networks (for a
discussion of aggregating networks, see Supplementary Material 2)
or on snapshots of networks (De Domenico, Granell, Porter, &
Arenas, 2016). For instance, the dynamics of disease and informa-
tion spread can be coupled in a multilayer framework to reveal how
different social processes can impact the onset of epidemics (Wang,
Andrews, Wu, Wang, & Bauch, 2015). Historically, the usage of
‘multiplexity’ dates back many decades (Mitchell, 1969), and the
new mathematical formalism (De Domenico et al., 2013; Kivel€a
et al., 2014; Newman, 2018c; Porter, 2018) has produced a unified
framework that makes it possible to consolidate analysis and ter-
minology. For reviews of previous multilayer network studies and
applications in other fields, see Aleta and Moreno (2019), Boccaletti
et al. (2014), D'Agostino and Scala (2014), Kivel€a et al. (2014) and
Pilosof, Porter, Pascual, and K�efi (2017).

Types of Multilayer Networks

The mathematical framework of multilayer networks was
developed recently to create a unified formalism to study such
networks (De Domenico et al., 2013; Kivel€a et al., 2014; Mucha,
Richardson, Macon, Porter, & Onnela, 2010; Porter, 2018). One can
use this multilayer network framework, which we follow in this
paper and detail in SupplementaryMaterial 1, to represent a variety
of network types and situations. In contrast tomonolayer networks,
which are traditional in network analysis and which consist of only
a single network ‘layer’, multilayer networks can include many
different types of data that are commonly collected in studies of
animal behaviour. For example, types of social interactions, spatial
locations (with connections between them) and different measures
of genetic relatedness can all constitute layers in a multilayer
network. Node attributes can include behavioural or physical
phenotypes, sex, age, personality, and more. Edge attributes, such
as their weight or direction, can encode interaction frequencies,
distances between locations, dominance, and so on. Commonly
studied types of multilayer networks that can accommodate such
data include the following.

(1) Multiplex networks (i.e. edge-coloured networks) are
multilayer networks in which interlayer edges connect nodes to
themselves on different layers (Fig. 1, Supplementary Material 1).
It is often assumed, for convenience, that all layers consist of the
same set of nodes, but this is not necessary.
(a) In multirelational networks, each layer represents a
different type of interaction. For example, a network of
aggressive interactions can be connected with a network of
affiliative interactions through interlayer edges that link in-
dividuals to themselves if they appear in both layers (Fig. 1,
horizontal dotted black lines).
(b) In temporal networks, each layer encodes the same type
of interactions during different time points or over different
time windows. In the most common multiplex representa-
tion of a temporal network, consecutive layers are connected
to each other through interlayer edges that link individuals
to themselves at different times (Fig. 1, vertical dotted blue
lines).
(2) In interconnected networks (i.e. node-coloured networks), the
nodes in different layers do not necessarily represent the same
entities, and interlayer edges can exist between different types of
nodes. See our discussion of the mathematical formalism and an
example figure in Supplementary Material 1.
(a) Networks of networks consist of subsystems, which
themselves are networks that are linked to each other
through interlayer edges between the subsystems' nodes. For
example, one can model intergroup interactions in a
population-level network of interactions between social
groups, which are themselves networks.
(b) In intercontextual networks, one can construe each layer
as representing a different type of node. For example, in-
teractions between males can be in one layer, interactions



Table 1
A nonexhaustive selection of multilayer network approaches for studying questions in behavioural ecology

Research aim Level
(I/G/P/E)

Examples of questions Multilayer
approach

Description Software package References

Identify important
or influential
nodes or edges

I/G (1) How will a group be affected if certain
individuals are removed?
(2) Is social influence determined by
interactions in more than one situation?
(3) Which relationships are most critical
for group cohesion (when applying
measures to edges)?
(4) How stable is an individual's
importance over time?

Eigenvector
versatility

Multilayer extension of eigenvector centrality;
in it, an individual's importance depends on its
connections within and across layers and on the
connections of its neighbours

MuxViz (R) (De Domenico,
Porter et al., 2015)

De Domenico, Sol�e-Ribalta et al.
(2015)

(5) Which individuals link the most
individuals in a group within or across
social situations and/or over time?
(6) How important is an individual for
group cohesion?

Betweenness
versatility

Multilayer extension of geodesic betweenness
centrality; it measures how often shortest paths
(including both intralayer and interlayer edges)
between each pair of nodes traverse a given
node

MuxViz De Domenico, Sol�e-Ribalta et al.
(2015)

(7) Does the role of an individual in its
social group carry over across social
situations?

Multidegree A vector of the intralayer degrees of each
individual across all layers

Pymnet (Python) (Kivel€a, n.d.) Menichetti, Remondini,
Panzarasa, Mondrag�on, &
Bianconi (2014)

Quantify network
properties at
different scales

G/P/E (1) What are the coherent groups in a
network of animals?
(2) Which individuals preferentially
interact with each other in different or
multiple contexts?

Multislice
modularity
maximization,
Multilayer InfoMap

Identifies communities of individuals in which
the same individuals in different layers can be
assigned to different communities

MuxViz; GenLouvain (https://
github.com/GenLouvain/
GenLouvain (Jeub, Bazzi, Jutla,
& Mucha (n.d.)); in MATLAB,
MathWorks, Natick, MA, U.S.A.)

Mucha et al. (2010)

(3) What are the social communities,
coreeperiphery structures, or other
large-scale structures in different types
of social situations?

Stochastic block
models

Statistical models of arbitrary block structures
in networks

Graph-tool (Python) Peixoto (2015)

(4) Are there consistent, ‘typical’ types of
interaction patterns across social
situations?

Motifs Interaction patterns between multiple
individuals (e.g. node pairs or triples), within
and/or across layers, that appear more often
than in a specified null model

MuxViz Battiston, Nicosia, Chavez, &
Latora, 2017; Wernicke &
Rasche, 2006

(5) How similar are the interaction
patterns in different social situations?
(6) How often do interactions between
individuals co-occur in multiple situations?

Global overlap Number of pairs of nodes that are connected by
edges in multiple layers

MuxViz; Multinet R package
(Magnani & Dubik, 2018)

Bianconi (2013)

Model statistical
properties of a
network

G/P/E (1) Are interaction patterns influenced by
group size?

Randomization for
multilayer
networks

Construction of randomized ensembles of
synthetic multilayer networks for comparison

Pymnet Kivel€a et al., 2014, Section 4.3

(2) Are relationships or interactions in one
social situation related to relationships or
interactions in a different social situation?
(3) Are relationships at one time point
related to those at a different time point?

Exponential
random graph
model (ERGM)

An extension of ERGMs to multilayer networks MPNET (Java-based) for two-
layer multilayer networks

Heaney, 2014; Wang, Robins,
Pattison, & Lazega, 2013

(4) How do network relationships in one
social situation or at one point in time
affect subsequent relationships in other
situations or at other times?

Markov models of
coevolving
multiplex networks

Models of the probability of an edge existing in
a layer at one time as a function of an edge
existing between the same pair of nodes in any
layer in the previous time

MultiplexMarkovChain
(https://github.com/vkrmsv/
MultiplexMarkovChain; in
Python)

Fisher et al., 2017;
Vijayaraghavan, No€el, Maoz, &
D'Souza, 2015

Stochastic actor-
oriented models for
multiple networks

Statistical models of what influences the
creation and termination of edges over time.
The version that we consider can model the
coevolution of two networks (or two layers) as a
result of their influence on each other

Code (in R) is available at
https://www.stats.ox.ac.uk/
~snijders/siena/siena_scripts.
htm

(continued on next page)
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between females can be in a second layer, and intersex in-
teractions are interlayer edges. See Fig. 1 in Silk, Weber et al.
(2018) and Fig. 1 in Silk et al. (2018).
(c) Spatial networks, which we define here as networks of
locations, can be linked with social networks of animals that
move between these locations (Pilosof et al., 2017; Silk et al.,
2018). Our use of the term ‘spatial networks’ refers to net-
works that are embedded in space, rather than networks that
are influenced by a latent space (Barthelemy, 2018).
Throughout this paper, we use the term ‘multilayer networks’ to
refer to any of the variants above, unless we specify that a method
applies to only one or a subset of specific network types. For a re-
view of other types of multilayer networks, see Kivel€a et al. (2014).

NOVEL INSIGHTS INTO ANIMAL SOCIALITY: FROM INDIVIDUALS
TO POPULATIONS

We propose that a multilayer network approach can advance
the study of animal behaviour and expand the types of questions
that one can investigate. Specifically, we discuss how a multilayer
framework can enhance understanding of (1) an individual's role
(or roles) in a social network, (2) group-level structure and dy-
namics, (3) population structure and (4) evolutionary models of the
emergence of sociality.

An Individual's Role(s) in Society

Traditionally, the use of network analysis to examine the impact
of individuals on their society has focused on the social positions of
particular individuals using various centrality measures (such as
degree, eigenvector centrality, betweenness centrality, and others;
see Pinter-Wollman et al., 2014; Wasserman & Faust, 1994; Wey
et al., 2008; Williams & Lusseau, 2006). It is common to construe
individuals with disproportionally large centrality values as influ-
ential or important to a network in some way (but see Rosenthal,
Twomey, Hartnett, Wu, & Couzin, 2015 for a different trend). The
biological meaning of ‘importance’ and corresponding centrality
measures differ among types of networks and is both system-
dependent and question-specific. Consequently, one has to be
careful to avoid misinterpreting the results of centrality calcula-
tions. Centrality measures have been used to examine which in-
dividuals have the most influence on a group in relation to age, sex
or personality (Sih et al., 2009; Wilson, Krause, Dingemanse, &
Krause, 2013) and to study the fitness consequences of holding an
influential position (Pinter-Wollman et al., 2014). A multilayer
approach can advance understanding of roles that individuals play
in a population or a social group, and it can potentially identify
central individuals who may be overlooked when using monolayer
approaches on ‘multidimensional’ data.

An individual's role in a social group is not restricted to its
behaviour in just one social or ecological situation. A multilayer
approach creates an opportunity to consolidate analyses of a variety
of social situations and simultaneously examine the importances of
individuals across and within situations. Many centrality measures
have been developed for multilayer networks, and different ones
encompass different biological interpretations. For instance,
eigenvector ‘versatility’ (see Supplementary Material 1 for its
mathematical definition) is one way to quantify the overall
importance of individuals across and within layers, because this
measure takes into account multiple layers to identify individuals
who increase group cohesion in multiple layers and bridge social
situations (De Domenico, Sol�e-Ribalta et al., 2015). In a multirela-
tional network, an individual can have small degree (i.e. degree
centrality) in each layer, where each layer represents a different



Aggressive Trophalaxis

t=1

t=2

t=3

A B C D

Figure 1. A hypothetical multilayer network. Four ants interact at different time points and in two different ways. Each diamond represents a layer. The stack of three layers on the
left represents aggressive interactions, and the stack of three layers on the right represents trophalactic interactions. Each colour represents a different time point (blue is t¼1, green
is t¼2, and yellow is t¼3). Solid lines represent intralayer (i.e. within-layer) interactions, dotted blue lines represent interlayer (i.e. across-layer) edges in the temporal aspect, and
dotted black lines represent interlayer edges in the behavioural aspect. Each interlayer edge connects replicates of the same individual across different layers. See Supplementary
Material 1 for further discussion and for a presentation of the mathematical formalism of multilayer networks.
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social situation, but it may participate in many social situations,
thereby potentially producing a larger impact on social dynamics
than individuals with large degrees in just one or a few social sit-
uations. One can also account for the inter-relatedness of behav-
iours in different layers in a multilayer network when combining
interlayer centralities, if appropriate for the study system (De
Domenico, Sol�e-Ribalta et al., 2015). For example, it is not
possible for two individuals to engage in grooming interactions
without also being in proximity. By accounting for inter-relatedness
between proximity and grooming when calculating multilayer
centralities and versatilities, it may be possible to consider
grooming interactions as explicitly constrained by proximity in-
teractions and thereby incorporate potentially important nuances.

The appropriateness of a versatility measure differs across bio-
logical questions, just as distinct centrality measures on a mono-
layer network have different interpretations (Wasserman & Faust,
1994; Wey et al., 2008). Versatility measures that have been
developed include shortest-path betweenness versatility, hub/au-
thority versatility, Katz versatility and PageRank versatility (De
Domenico, Sol�e-Ribalta et al., 2015). Experimental removal of
versatile nodes, similar to the removal of central nodes in mono-
layer networks (Barrett et al., 2012; Firth et al., 2017; Flack, Girvan,
deWaal,& Krakauer, 2006; Pruitt& Pinter-Wollman, 2015; Sumana
& Sona, 2013), has the potential to uncover the effects of the
removed nodes on group actions, group stability, and their impact
on the social positions of other individuals. However, which
versatility measure gives the most useful information about an
individual's importance may depend on the level of participation of
an individual in the different types of behaviours that are encoded
in a multilayer network. Furthermore, if layers have drastically
dissimilar densities, one layer can easily dominate a versatility
measure. For other nuances and caveats, see our discussion below
in Considerations When Using Multilayer Network Analysis. In
addition to calculating node versatility, one can examine versatility
of edges to yield interesting insights into the importance of re-
lationships with respect to group stability and cohesion. Such an
approach can help reveal whether interlayer interactions are
comparably important, more important, or less important than
intralayer interactions for group cohesion. Examining edge versa-
tility can also illuminate which interactions between particular
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Figure 2. Social networks of a baboon group based on (a) grooming interactions, (b)
proximity-based association relations and (c) an aggregate of both interaction types. We
created the network visualization using MuxViz (De Domenico, Porter, & Arenas, 2015).
To construct a multilayer network, we joined the grooming and association monolayer
networks as two layers in a multiplex network by connecting nodes that represent the
same individual using interlayer edges. The sizes of the nodes are based on multilayer
PageRank versatility (with larger nodes indicating larger versatilities). We colour the
nodes based on monolayer PageRank centrality (with darker shades of green indicating
larger values). A given individual in these two layers has the same size, but it can have
different colours in the two layers. In the aggregate layer, we determine both the node
sizes and their colours from PageRank centrality values in the aggregate network. We
position the nodes in the same spatial location in the two layers and the aggregate
network. The data (Franz et al., 2015a) are from Franz et al. (2015b).
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individuals (within or across layers) have the largest impact on
group activity and/or stability; and it may be helpful for conser-
vation efforts, such as the identification of social groups that are
vulnerable to fragmentation (Snijders, Blumstein, Stanley,& Franks,
2017).

A multilayer approach can help elucidate the relative impor-
tances of different individuals in various social or ecological situa-
tions. For example, a node's ‘multidegree’ is a vector of the
intralayer degrees (each calculated as on a monolayer network) of
an individual in each layer. Differences in how the degrees of in-
dividuals are distributed across layers help indicate which in-
dividuals have influence over others in the different layers. For
example, if each layer represents a different situation, individuals
whose intralayer degree peaks in one situation may be more
influential in that context than individuals whose intralayer degree
is small in that situation but peaks in another one. Because multi-
degree does not account for interlayer connections, quantitatively
comparing it with versatility or other multilayer centralities, which
account explicitly for interlayer edges (Kivel€a et al., 2014), can help
elucidate the importance of interlayer edges and thereby highlight
interdependencies between biological situations. Such behavioural
interdependencies can help quantify the amount of behavioural
carryover across situations (i.e. ‘behavioural syndromes’; Sih, Bell,
& Johnson, 2004) if, for example, measures that account for inter-
layer edges explain observed data better than measures that do not
take into account such interdependencies.

As a final example, one can use a multilayer approach to
examine temporal changes in an individual's role (or roles) in a
group. A multilayer network in which one aspect represents time
and another aspect represents situation (Fig. 1) can reveal when
individuals gain or lose central roles and whether roles are lost
simultaneously in all situations or if changes in one situation pre-
cede changes in another. Comparing monolayer (e.g. time-
aggregated) measures and multilayer measures has the potential
to uncover the importance of temporal changes in an animal's
fitness.

Roles of individuals in a group: baboon versatility in a multiplex
affiliation network

To demonstrate the potential insights from employing multi-
layer network analysis to examine the roles of individuals in a social
group using multiple interaction types, we analysed published
affiliative interactions from a baboon (Papio cynocephalus) group of
26 individuals (Franz, Altmann, & Alberts, 2015a, 2015b) (Fig. 2).
One can quantify affiliative relationships in primates in multiple
ways, including grooming, body contact and proximity (Barrett &
Henzi, 2002; Jack, 2003; Kasper & Voelkl, 2009; Pasquaretta
et al., 2014). To characterize affiliative relationships, combinations
of these behaviours have been investigated separately (Jack, 2003;
Perry, Manson, Muniz, Gros-Louis, & Vigilant, 2008), pooled
together (Kasper & Voelkl, 2009), or used interchangeably
(Pasquaretta et al., 2014). These interaction types are often corre-
lated with each other, but their networks typically do not coincide
completely (Barrett & Henzi, 2002; Brent, MacLarnon, Platt, &
Semple, 2013).

We analyse the baboon social data in four ways: (1) as a
weighted grooming network with only grooming interactions
(Fig. 2a), (2) as a weighted association network with only
proximity-based associations (Fig. 2b), (3) as an aggregate mono-
layer network that we obtained by summing the weights of
grooming and association interactions of the node pairs (Fig. 2c; see
Supplementary Material 2 for more details on aggregating net-
works) and (4) as a multiplex network with two layers (one for
grooming and one for associations). We then calculated measures
of centrality (for themonolayer networks in (1)e(3)) and versatility
(for the multilayer network (4)) using MuxViz (De Domenico,
Porter, & Arenas, 2015). We ranked individuals according to their
PageRank centralities and versatilities (De Domenico, Sol�e-Ribalta
et al., 2015), which quantify the importance of an individual in a
network recursively based on being adjacent to important neigh-
bours (Fig. 3).

The most versatile baboon in the multilayer network (individual
3 in Fig. 3) is the fourth-most central individual in the aggregated
network, the second-most central individual in the grooming
network and the 16th-most central individual in the association
network (Fig. 3). These differences in results using the multilayer,
aggregated and independent networks of the same data highlight
the need to (1) carefully select which behaviours to encode in
networks and (2) interpret the ensuing results based on the ques-
tions of interest (Carter, DeChurch, Braun, & Contractor, 2015;
Krause, James, Franks, & Croft, 2015). When social relationships
depend on multiple interaction types, it is helpful to use a multi-
layer network framework to reliably capture an individual's social
roles (see Table 1 for more questions and tools), because monolayer
calculations may yield different results and centrality in one layer
can differ substantially from versatility in an entire multilayer
network (Fig. 3).

Multilayer Structures in Animal Groups

Animal social groups are emergent structures that arise from
local interactions (Sumpter, 2010), making network analysis an
effective approach for examining group-level behaviour. Networks
provide useful representations of dominance hierarchies (Hobson,
Avery, & Wright, 2013) and allow investigations of information
transmission efficiency (Pasquaretta et al., 2014), group stability
(Baird & Whitehead, 2000; McCowan et al., 2011), species
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Figure 3. A circular heat map illustrates variation among individuals in PageRank
centralities and versatilities. Darker colours indicate larger values of PageRank cen-
tralities and versatilities. A given angular wedge in the rings indicates the values for
one individual, whose identity (ID) we list outside the ring. The rings are PageRank
centrality values from the monolayer grooming network (innermost ring), association
network (second ring), aggregate network in which we sum the grooming and asso-
ciation ties (third ring) and PageRank versatility for the multiplex network (outermost
ring). Using a blue outline, we highlight individual 3, who we discuss in the main text.
We indicate the PageRank centrality and versatility values of individual 3 on the rings.
We created this visualization using MuxViz (De Domenico, Porter et al., 2015). The data
(Franz et al., 2015a) are from Franz et al. (2015b).
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comparisons (Pasquaretta et al., 2014; Rubenstein, Sundaresan,
Fischhoff, Tantipathananandh, & Berger-Wolf, 2015) and collective
behaviour (Rosenthal et al., 2015; Westley, Berdahl, Torney, & Biro,
2018). However, given that animals interact with each other in
many differentdand potentially interdependentdways, a multi-
layer approach may help accurately capture a group's structure
and/or dynamics. In one recent example, Smith-Aguilar, Aureli,
Busia, Schaffner, and Ramos-Fern�andez (2018) studied a six-layer
multiplex network of spider monkeys, with layers based on types
of interactions. In this section, we detail how multilayer method-
ologies can advance the study of group stability, group composition
and collective movement.

One can analyse changes in group stability and composition
using various multilayer calculations or by examining changes in
relationships across network layers (Beisner&McCowan, 2015). For
instance, Barrett et al. (2012) examined changes in a baboon group
following the loss of group members by calculating a measure from
information theory called ‘joint entropy’ on a multiplex net-
workdwith grooming, proximity and aggression layersdboth
before and after a known perturbation. A decrease in joint entropy
following individual deaths corresponded to individuals interacting
in a more constrained and therefore more predictable manner.
Using a different approach, Beisner et al. (2015) investigated co-
occurrences of directed aggression and status-signalling in-
teractions between individuals in macaque behavioural networks.
In their analysis, they employed a null model that incorporates
constraints that encode interdependences between behaviour
types. For example, perhaps there is an increased likelihood that
animal B signals to animal A if animal A aggresses animal B.
Incorporating such constraints was more effective at reproducing
the joint probabilities (which they inferred from observations) of
interactions in empirical data in stable macaque groups than in
groups that were unstable and eventually collapsed (Chan, Fushing,
Beisner, & McCowan, 2013). These findings illustrate how in-
terdependencies between aggression and status-signalling
network layers may be important for maintaining social stability
in captive macaque groups. A potential implication of these find-
ings is that analysing status signalling and aggression may be
helpful for predicting social stability. Another approach that may be
useful for uncovering temporal structures in multilayer networks is
an extension of stochastic actor-oriented models (SAOMs)
(Snijders, 2017). One can use SAOMs to examine traits and pro-
cesses that influence changes in network ties over time, including
in animal social networks (Fisher, Ilany, Silk, & Tregenza, 2017;
Hunt et al., 2018; Ilany, Booms, & Holekamp, 2015). SAOMs can
use unweighted or weighted edges, with some restrictions in how
weights are incorporated (Snijders, 2017). A multiple-network
extension to an SAOM enables modelling of the co-dynamics of
two sets of edges, while incorporating influences of other individ-
ual or network-based traits. Such an approach has the potential to
provide interesting insights into how changes in one layer may
cascade into changes in other layers. It also provides a useful
method to quantify links between group-level structural changes
and temporal dynamics of individual centralities.

Multilayer analysis of animal groups can go beyond monolayer
network analysis when highlighting a group's composition and
substructures. For example, one measure of interdependence, the
proportion of shortest paths between node pairs that span more
than one layer (Morris & Barthelemy, 2012; Nicosia, Bianconi,
Latora, & Barthelemy, 2013), can help describe a group's interac-
tion structure. In social insect colonies, layers can represent
different tasks. As time progresses and individuals switch tasks, an
individual can appear in more than one layer. The amount of
overlap among layers (see Supplementary Material 1, Similarity of
Layers: Example Measures for examples of overlap measures) can
indicate the level of task specialization and whether or not there
are task-generalist individuals (Pinter-Wollman, Hubler, Holley,
Franks, & Dornhaus, 2012). Consequently, the above interdepen-
dencemeasuremay be useful as away to quantify division of labour
(Beshers & Fewell, 2001), because having a small proportion of
shortest paths that traverse multiple layers may be an indication of
pronounced division of labour. Such a new measure may reveal
ways inwhich workers are allocated to tasks that are different from
those that have been inferred by using other measures of division of
labour. Comparing different types of measures may uncover new
insights into the mechanisms that underlie division of labour.

Animal groups are often organized into substructures called
‘communities’ (Fortunato & Hric, 2016; Porter, Onnela, & Mucha,
2009; Shizuka et al., 2014; Wolf, Mawdsley, Trillmich, & James,
2007), which are sets of individuals who interact with each other
more often (in absolute amount and/or as a rate) than they do with
other individuals. Finding communities can aid in predicting how a
group may split, which can be insightful for managing captive
populations when it is necessary to remove individuals (Sueur,
Jacobs et al., 2011). Community-detection algorithms distinguish
sets of individuals who are connected more densely within a
community than with individuals in other communities in a
network. One example of a multilayer community-detection algo-
rithm is maximization of ‘multislice modularity’ (Mucha et al.,
2010), which can account for different behaviours and/or time
windows. A recent review includes a discussion of how multilayer
modularity maximization can inform ecological questions, such as
the ecological effects of interdependencies between herbivory and
parasitism (Pilosof et al., 2017). In animal groups, individuals can be
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Figure 4. Multiplex network of dolphin proximity-based associations during (1)
travelling, (2) socializing and (3) foraging. There are 102 distinct individuals, and each
layer has a node for each individual. Individuals who were never seen interacting in a
specific layer (behavioural context) are the small white nodes. Individuals who inter-
acted in at least one layer are the large nodes, which we colour based on their com-
munity assignment from multilayer InfoMap (De Domenico, Lancichinetti et al., 2015).
We created the network visualization with MuxViz (De Domenico, Porter et al., 2015).
The data (Gazda, Iyer, Killingback, Connor, & Brault, 2015a) are from Gazda et al.
(2015b).
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part of more than one community, depending on the types of in-
teractions under consideration. For example, an individual may
groom with one group of animals but fight with a different group.
Because maximizing multislice modularity does not constrain an
individual's membership to a single community, it can yield com-
munities of different functions with overlapping membership. It
can also be used to examine changes in community structure over
time. Additionally, sex, age and kinship are known to influence
patterns of subgrouping in primates (Sueur, Jacobs et al., 2011), so
investigating group structure while considering several of these
characteristics at once can reveal influences of subgrouping (such
as nepotism) that may not be clear when using monolayer clus-
tering approaches. See Aleta and Moreno (2019) for references to
various methods for studying multilayer community structure.

Collective motion is another central focus in studies of animal
groups (Berdahl, Biro, Westley, & Torney, 2018; Sumpter, 2010).
Coordinated group movements emerge from group members
following individual-based, local rules (e.g. in fish schools and bird
flocks; Couzin, Krause, James, Ruxton, & Franks, 2002; Sumpter,
2010). Recent studies of collective motion have employed
network analysis to examine relationships of individuals beyond
the ones with their immediate neighbours. For instance, one can
incorporate connections between individuals who are in line of
sight of each other (Rosenthal et al., 2015) or with whom there is a
social relationship in other contexts (Bode, Wood, & Franks, 2011;
Farine et al., 2016). One can also combine multiple sensory modes
into a multilayer network to analyse an individual's movement
decisions. Expanding the study of collective motion to incorporate
multiple sensorymodalities (e.g. sight, odour, vibrations, and so on)
and social relationships (e.g. affiliative, agonistic, and so on) can
benefit from a multilayer network approach, which may uncover
synergies among sensory modes, social relationships and envi-
ronmental constraints.

Multilayer groupings: dolphin communities emerge from
multirelational interactions

To demonstrate the utility of multilayer network analysis for
uncovering group dynamics, we analysed the social associations of
102 bottlenose dolphins (Tursiops truncatus) that were observed by
Gazda et al. (2015b). They recorded dolphin associations during
travel, socialization and feeding. They identified different com-
munities when analysing the interactions as three independent
networks and compared the results with an aggregated network, in
which they treated all types of interactions equally (regardless of
whether they occurred when animals were travelling, socializing or
foraging). However, analysing these networks separately or as one
aggregated network ignores interdependencies that may exist be-
tween the different behaviours (Kivel€a et al., 2014). Therefore, we
employed multiplex community detection, using the multilayer
InfoMap method (De Domenico, Lancichinetti et al., 2015), to
examine how interdependencies between layers influence which
communities occur when the data are encoded as a multiplex
network. We use multiplex community detection to assign each
replicate of an individual (there is one for each layer in which an
individual appears; Supplementary Material 1) to a community.
Therefore, an individual can be assigned to one or several com-
munities, where the maximum number corresponds to the number
of layers in which the individual is present. The community as-
signments depend on how individuals are connected with each
other in a multilayer network and on interactions between layers,
which arise in this case from a parameter in the multilayer InfoMap
method (see Supplementary Material 2 for details). The coupling
between layers thus arises both from interlayer edges and their
weights (Supplementary Material 1) and from a parameter in the
community-detection method (Supplementary Material 2). With
no coupling, the layers are distinct and communities cannot span
more than one layer; for progressively larger coupling, commu-
nities span multiple layers increasingly often. For details on our
parameter choices for community detection with the multilayer
InfoMap method, see Supplementary Material 2.

To be consistent with Gazda et al. (2015b), our multiplex
network (Fig. 4) includes only individuals who were seen at least
three times, and we weight the edges using the half-weight index
(HWI) of association strength (Cairns & Schwager, 1987). Our
community-detection computation yielded 12 communities. The
largest community (Fig. 4, dark blue) consists of individuals from all
three association layers, and several smaller communities consist of
only foraging individuals, only travelling individuals, and both
foraging and travelling individuals. For details on the specific
implementation of the InfoMap method, see Supplementary
Material 2.

In their investigation, Gazda et al. (2015b) revealed contextu-
ally-dependent association patterns, as indicated by different
numbers of communities in the foraging (17), travel (8) and social
(4) networks. Notably, when examining the three behavioural sit-
uations as a multiplex network, we found similar trends in the
numbers of communities across behavioural situations: foraging
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individuals were in nine communities, travelling individuals were
in six communities, and individuals who interact socially were in
only one community. Thus, our analysis strengthens the finding
that dolphins forage in more numerous, smaller groups and so-
cialize in fewer, larger groups. Different methods for community
detection yield different communities of nodes (Fortunato & Hric,
2016); therefore, it is not surprizing that we detected a different
number of communities in the monolayer networks than the
number in Gazda et al. (2015b). We used InfoMap, which has been
implemented for both monolayer and multilayer networks. By
contrast, Gazda et al. (2015b) used a community-detection
approach that has been implemented only for monolayer net-
works. Additionally, because we found one markedly large com-
munity that spans all layers, we note that it may also be useful to
explore coreeperiphery structure in this network (Csermely,
London, Wu, & Uzzi, 2013; Rombach, Porter, Fowler, & Mucha,
2017).

We also analysed each layer independently and an aggregate of
all layers using monolayer InfoMap (Rosvall & Bergstrom, 2007),
which is implemented in MuxViz. Multiplex community detection
produces somewhat different community assignments from
monolayer community detection (Fig. 5). With a multiplex
network, one can identify and label an individual's membership in a
community that spans one or several layers (Fig. 5a). However, in
monolayer community detection, one examines individuals inde-
pendently in different layers, thereby assigning their replicates in
different layers to different communities (Fig. 5b). Therefore, which
individuals are grouped into communities can vary substantially.
See Table 1 for more questions and tools in multilayer community
detection in animal behaviour. As this example illustrates,
depending on the research aims, the form of the data and
(a) Multilayer InfoMap community detection
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Figure 5. Community structures of individuals from (a) multilayer InfoMap community de
dividual dolphin, and each column represents a behavioural situation. In the multiplex co
individuals who are the same colour in one or more columns belong to the same commun
appears in all three layers can be assigned to the same community in all three situations (and
three different communities, and it then has different colours in each layer. It can also be a
behavioural situation (as well as the aggregate monolayer network in the last column) yiel
Individuals in the same column and the same colour are assigned to the same community.
behavioural situation.
knowledge of the study system, one or both of monolayer and
multilayer investigations may provide valuable insights into the
structure of a social system of interest.

Multilayer Processes at a Population Level

Network analysis has been fundamental in advancing under-
standing of social processes over a wide range of spatial scales and
across multiple social groups (Silk, Croft, Tregenza, & Bearhop,
2014; Sueur, King et al., 2011). A multilayer approach is conve-
nient for combining spatial and social networks (e.g. in a recent
study of international human migration; Danchev & Porter, 2018),
and it may contribute to improved understanding of fissionefusion
dynamics, transmission processes and dispersal. It also provides an
integrative framework to merge social data from multiple species
and extend understanding of the drivers that underlie social dy-
namics of multispecies communities (Farine, Garroway, & Sheldon,
2012; Sridhar, Beauchamp, & Shanker, 2009).

Many animals possess complicated fissionefusion social dy-
namics, inwhich groups join one another or split into smaller social
units (Couzin & Laidre, 2009; Silk et al., 2014; Sueur, King et al.,
2011). It can be insightful to study such populations as networks
of networks. Additionally, recent advances in quantifying temporal
dynamics of networks have shed some light on fissionefusion so-
cial structures (Rubenstein et al., 2015). A multilayer approach
applied to association data (collected at times that make it
reasonable to treat group membership as independent across ob-
servations) can assist in detecting events and temporal scales of
social transitions in fissionefusion societies. For example, if each
layer in a multiplex network represents the social associations of
animals at a certain time, a multiplex community-detection
(b) Monolayer InfoMap community detection

Travel AggregateSocial Forage

tection and (b) monolayer InfoMap community detection. Each row represents an in-
mmunity detection (a), communities can span all three columns of behaviours, and
ity. Community colours are the same as those in Fig. 4. Note that an individual who
therefore have the same colour in all three columns). An individual can also be part of

ssigned twice to one community and once to another. In monolayer InfoMap (b), each
ds a separate set of communities, so we use a different colour palette in each column.
In both panels, white represents individuals who were not observed in the associated



Figure 6. A multilayer network of mixed-species interactions between blue tits, Cya-
nistes caeruleus (bottom layer; blue nodes), and great tits, Parus major (top layer; or-
ange nodes), in Wytham Woods, U.K. (in the CammooreStimpsons area) using data
from Farine, Aplin, Sheldon, and Hoppitt (2015a, 2015b). Each node represents an in-
dividual bird. Blue and orange edges connect individuals within layers (i.e. intraspecific
associations), and grey edges connect individuals across layers (i.e. interspecific as-
sociations). To aid clarity, we only show edges with a simple ratio index (Cairns &
Schwager, 1987; Ginsberg & Young, 1992) of 0.03 or larger. Photographs by Keith Silk.
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algorithm can uncover temporally cohesive groups, similar to the
detection of temporal patterns of correlations between various
financial assets (Bazzi et al., 2016). Further development of com-
munity detection and other clustering methods for general multi-
layer networks (e.g. stochastic block models; Peixoto, 2014, 2015)
and methods based on random walks (De Domenico, Lancichinetti
et al., 2015; Jeub, Balachandran, Porter, Mucha, & Mahoney, 2015;
Jeub, Mahoney, Mucha, & Porter, 2017) may provide insights into
the social and ecological processes that contribute to the temporal
stability of social relationships in fissionefusion societies.

Ecological environments and connections between different
locations have fundamental impacts on social dynamics (Barocas,
Golden, Harrington, McDonald, & Ben-David, 2016; Firth &
Sheldon, 2016; Leu, Farine, Wey, Sih, & Bull, 2016; Spiegel, Leu,
Sih, & Bull, 2016). A multilayer network representation can
explicitly link spatial and social processes in one framework
(Pilosof et al., 2017). One approach is to use interconnected net-
works of social interactions and spatial locations to combine layers
that represent social networks with layers for animal movement
and habitat connectivity. Data on social interactions can also have
multiple layers, with different layers representing interactions in
different locations or habitats. For example, in bison, Bison bison, it
was observed that group formation is more likely in open-meadow
habitats than in forests (Fortin et al., 2009). The same study also
noted that larger groups are more likely than smaller groups to
occur in meadow habitats. Multilayer network approaches, such as
examining distributions of multilayer diagnostics, may be helpful
for detecting fundamental differences in social relationships be-
tween habitats.

Important dynamical processes in animal societies, such as in-
formation and disease transmission, are intertwined with social
network structures (Allen et al., 2013; Aplin et al., 2014; Aplin,
Farine, Morand-Ferron, & Sheldon, 2012; Hirsch, Reynolds, Gehrt,
& Craft, 2016; Weber et al., 2013). Research on networks has
revealed that considering multilayer network structures can pro-
duce very different spreading dynamics than those detected when
collapsing (e.g. by aggregating) multiple networks into one
monolayer network (De Domenico et al., 2016). Multilayer ap-
proaches can uncover different impacts on transmission from
different types of social interactions (Craft, 2015; White et al., 2017)
or link the transmission of multiple types of information or disease
across the same network. Compartmental models of disease
spreading, which describe transitions of individuals between
infected and other states (e.g. susceptibleeinfected (SI) models,
susceptibleeinfectederecovered (SIR) models, and others; Kiss,
Miller, & Simon, 2017) have been used to model transmission
through multilayer networks (Aleta &Moreno, 2019; De Domenico
et al., 2016; Kivel€a et al., 2014). For example, several studies have
incorporated a multilayer network structure into an SIR model for
disease spreading coupled with information spreading about the
disease, with the two spreading processes occurring on different
network layers (Wang et al., 2015). This approach suggests that
taking into account the spread of information about a disease can
reduce the expected outbreak size, especially in strongly modular
networks and when infection rates are low (Funk, Gilad, Watkins,&
Jansen, 2009). Given the growing evidence for coupled infection
and behaviour dynamics in animals (Croft, Edenbrow et al., 2011;
Lopes, Block, & K€onig, 2016; Poirotte et al., 2017), using multi-
layer network analysis to help understand interactions between
information and disease spread is likely to be informative in studies
of contagions in animals. Analogous arguments apply to the study
of acquisition of social information, where learning one behaviour
can influence the likelihood of social learning of other behaviours.
For example, extending models of information spreading (Aleta &
Moreno, 2019; De Domenico et al., 2016; Kivel€a et al., 2014) to
two-aspect multilayer networks that include one layering aspect to
represent different types of social interactions and another aspect
to represent different time periods (Fig. 1) may provide valuable
insights into how social dynamics influence cultural transmissions
in a population.

The study of dispersal can also benefit from utilizing a multi-
layer framework. Networks have been used to uncover the role of
spatial (Reichert, Fletcher, Cattau, & Kitchens, 2016) and social
(Blumstein, Wey,& Tang, 2009) connectivity in dispersal decisions.
One can use a two-aspect multilayer approach to integrate spatial
layers that encode habitat connectivity, or movements of in-
dividuals, with social layers that encode intragroup and intergroup
social relationships. For example, integrating a multilayer frame-
work with existing multistatemodels of dispersal (such as the ones
in Borg et al., 2017; Polansky, Kilian, & Wittemyer, 2015) can make
it possible to relate the likelihood of transitioning between
dispersive and sedentary states to the positions of individuals in a
multilayer sociospatial network. Such integration of spatial and
social contexts may provide new insights both into the relative
roles of social and ecological environments in driving dispersal
decisions and into the subsequent effects of dispersal on popula-
tion structure.

Interspecific interactions as a multilayer network
Network approaches have been useful for studying the social

dynamics of mixed-species assemblages (Farine et al., 2012). For
example, in mixed-species groups of passerine birds, network
analysis was used to show that social learning occurs both within
and between species (Farine, Aplin, Sheldon, & Hoppitt, 2015b).
Mixed-species assemblages have an inherent multilayer structure.
Most simply, one can represent a mixed-species community as a
node-coloured network in which each layer represents a different
species (Fig. 6). To incorporate additional useful information in a
mixed-species multilayer network, one can represent the type of
behavioural interaction as an additional aspect of the network. For
example, one aspect can encode competitive interactions and
another can encode noncompetitive interactions.

Considering multilayer measures, such as multidegree or
versatility, may provide new insights into the role (s) of particular



K. R. Finn et al. / Animal Behaviour 149 (2019) 7e22 17
species or individuals in information sharing in mixed-species
groups. Furthermore, multilayer community detection has the po-
tential to provide new insights into the structure of fissionefusion
social systems that involve multiple species. The original study
(Farine et al., 2015b) that generated the networks that we used in
Fig. 6 investigated information transmission in both intraspecies
and interspecies social networks (i.e. constituent interaction types
of an interconnected network). The authors of the original study
concluded that both networks help predict the spread of informa-
tion, but that the likelihood of acquiring foraging information was
higher through intraspecific associations than through interspecific
associations, thereby providing a better understanding of infor-
mation transmission in mixed-species communities than would be
possible using monolayer network analysis. This highlights the
potential of taking explicitly multilayer approaches to better un-
derstand how information can spread within and between species
in mixed-species groups.

Evolutionary Models

Understanding the evolution of sociality is a central focus in
evolutionary biology (Krause & Ruxton, 2002). Research ap-
proaches include agent-based simulations, game-theoretic models,
comparative studies, and others. Evolutionary models have been
expanded to incorporate interactions between agents, resulting in
different evolutionary processes than those in models without in-
teractions (Nowak, Tarnita, & Antal, 2010). However, social behav-
iours evolve and persist in conjunction with other behaviours and
with ecological changes. Therefore, incorporating multiple types of
interactionsdsocial, physiological, and with an environmentdas
part of a multilayer framework can provide novel insights about the
pressures on fitness and evolutionary processes. For example,
incorporating interactions between molecules at the cellular level,
organs at the organismal level, individuals at the group level and
groups at the population level into a network of networks can
facilitate multilevel analysis of social evolution. In the following
paragraphs, we discuss how the expansion of evolutionary
modelling approaches to include multilayer network analysis may
enhance the study of (1) evolution of social phenomena (such as
cooperation) and (2) covariation in behavioural structures across
species.

Incorporating ideas from network theory into evolutionary
models has made it possible to account for long-term relation-
ships, nonrandom interactions and infrequent interactions
(Lieberman, Hauert, & Nowak, 2005). These considerations can
alter the outcomes of game-theoretic models of social evolution
and facilitate the emergence or persistence of interactions, such as
cooperation, by enabling assortativity of cooperative individuals
(Aktipis, 2004, 2006; Allen et al., 2017; Croft, Edenbrow, & Darden,
2015; Fletcher & Doebeli, 2009; Nowak et al., 2010; Rand,
Arbesman, & Christakis, 2011). Given the effects that group
structure can have on the selection and stability of cooperative
strategies, multilayer structures can significantly alter the dy-
namics (both outcomes and transient behaviour) of evolutionary
games. Indeed, it has been demonstrated, using a multilayer
network in which agents play games on multiple interconnected
layers, that cooperation can persist under conditions in which it
would not in a monolayer network (G�omez-Garde~nes, Reinares,
Arenas, & Floría, 2012; Wang, Szolnoki, & Perc, 2012; Wang,
Wang, Szolnoki, & Perc, 2015). Furthermore, the level of interde-
pendence, in the form of coupling payoffs between layers or by
strategy transfer across layers, can influence the persistence of
cooperation (Wang, Szolnoki, & Perc, 2013; Xia, Miao, Wang, &
Ding, 2014). Therefore, in comparison to monolayer network
analysis, using a multilayer network approach can improve the
realism of models by better reflecting the ‘multidimensional’ na-
ture of sociality and allowing a larger space of possible evolu-
tionary strategies and outcomes. Certain behaviours that may not
be evolutionarily stable when considering only one realm of social
interactions may be able to evolve and/or persist when consid-
ering a multilayer structure of an agent's possible interactions. For
example, expanding game-theoretic models to include multiple
types of coupled interactions may facilitate the inclusion of both
competition and mutualism, as well as both intraspecific and
interspecific interactions.

Comparative approaches offer another powerful method to
examine the evolution of different social systems across similar
species (Thierry, 2004; West-Eberhard, 1969). In socially complex
species, such comparisons can benefit greatly from a multilayer
approach. For instance, the macaque genus consists of over 20
species that exhibit a variety of social structures, each with co-
varying behavioural traits, such as those related to connectivity
and/or individual behaviours (Balasubramaniam et al., 2012, 2017;
Sueur, Petit et al., 2011; Thierry, 2004). A multilayer network
analysis of such covarying interactionsde.g. with layers as con-
nectivity types or time periodsdmay offer an effective way to
reveal differences in social structure. For example, using matrix-
correlation methods to measure similarities between layers in a
multilayer network offers away to compare how behaviours covary
across different species using a multiple regression quadratic
assignment procedure (MRQAP) (Croft, Madden, Franks, & James,
2011). For multilayer networks, global overlap (Bianconi, 2013)
and global interclustering coefficient (Parshani, Rozenblat, Ietri,
Ducruet, & Havlin, 2010) are two measures that can quantify the
overlap in edges between two layers. See SupplementaryMaterial 1
for a brief discussion of layer similarity measures. One can, for
instance, use global overlap between an affiliative network and
a kinship network to examine the extent to which nepotism plays a
role in social structure across species (Thierry, 2004). In such an
analysis, it may also be useful to account for spatial dependencies.

Researchers continue to develop new approaches for measuring
heterogeneous structures in multilayer networks (Aleta & Moreno,
2019; Kivel€a et al., 2014) that can aid in testing specific evolutionary
hypotheses. For example, the ‘social brain hypothesis’ (Dunbar,
1998) posits that the evolution of cognition is driven by sociality,
which is cognitively challenging. Recently, there have been several
propositions for how to define sociality to test the social brain
hypothesis; all of these include the idea that relationships between
animals arise from different types of interactions (Bergman &
Beehner, 2015; Fischer, Farnworth, Sennhenn-Reulen, & Ham-
merschmidt, 2017). Multilayer network analysis can aid in devel-
oping objective measures of social structures that include the
nuances of the various proposed definitions. Another evolutionary
hypothesis, the ‘covariation hypothesis’ (Thierry, 2004), posits that
changes in a single trait or behaviour can lead to changes in global
social organization. Simulations of agent-based models (ABMs) on
multilayer networks can test this hypothesis by exploring how
different behavioural parameters along with coupling between
layers influence group-level structure (Hemelrijk, 2002). For
example, an ABM ofmacaque societies (called ‘Groofiworld’) linked
grooming and fighting behaviour through a single trait (termed
‘anxiety’) (Hemelrijk & Puga-Gonzalez, 2012; Puga-Gonzalez, Hil-
denbrandt, & Hemelrijk, 2009). This model has an implicitly
multilayer network structure, as it includes multiple interaction
‘layers’ that are coupled by a parameter. By incorporating such
structure, the model illustrated that patterns of reciprocation and
exchange (Hemelrijk & Puga-Gonzalez, 2012) and aggressive in-
terventions (Puga-Gonzalez, Cooper, & Hemelrijk, 2016) can
emerge from the presence of a few interconnected interaction
types along with spatial positions.
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CONSIDERATIONS WHEN USING MULTILAYER NETWORK
ANALYSIS

We have outlined many opportunities for multilayer network
approaches to be useful for the study of animal behaviour. How-
ever, the application of multilayer network analysis to animal
behaviour data is in its infancy, with many exciting directions for
future work. Multilayer network analysis may not always be
appropriate for a given study, and there are several important
considerations about both the applicability of the tools and the
types of data on which to use them. Most importantly, practical
implementation of these new tools will vary across study systems,
and it will differ based on the questions asked. Therefore, re-
searchers should not blindly implement these new techniques;
instead, as with any other approach, they should be driven by their
research questions and ensure that the tools and data are appro-
priate for answering those questions.

When and How to Use Multilayer Network Analysis

Multilayer network analysis adds complexity to the repre-
sentation, analysis and interpretation of data. Therefore, it should
be applied only when incorporating a system's multifaceted na-
ture can contribute to answering a research question, without
adding needless complexity to data interpretation. Different
types of social relationships may differ in the ‘units’ of their
measurement, and it can be challenging to interpret a multilayer
network analysis of such integrated data. For example, if one
layer represents genetic relatedness and another represents a
social interaction, a multilayer similarity measure can reveal one
or more relationships between these layers, but a versatility
measure that uses both layers may be impractical or confusing to
interpret, because they encode different types of connectivity
data (i.e. relatedness and behaviour). In a similar vein, intralayer
and interlayer edges can have entirely different meanings from
each other, and it can thus be difficult to interpret the results of
considering them jointly (Kivel€a et al., 2014; Supplementary
Material 1).

Therefore, while the strength of using a multilayer network
formalism is that it includes more information about interactions
than a monolayer network, it is imperative to consider carefully
which interactions to include in each layer, based on the study
question. It is also important to be careful about which calculations
are most appropriate for the different layers in a multilayer
network, based on the functions of those layers, especially when
they represent different behaviours.

Data Requirements

Just as in monolayer network analysis (or in any study that
samples a population), a key challenge is collecting sufficient and/
or appropriately sampled data that provide a realistic depiction of
the study system (Newman, 2018a, 2018b; Whitehead, 2008).
Breaking data intomultiple layers can result in sparse layers that do
not provide an appropriate sample of the relationships in each
layer. Furthermore, if data sampling or sparsity varies across
different layers or if the frequency of behaviours differs drastically,
one layer may disproportionally dominate the outcome of a
multilayer calculation. To avoid domination of one data type, one
can threshold the associations, normalize edge weights, adjust
interlayer edge weights (Supplementary Material 1) or aggregate
layers (Supplementary Material 2) that include redundant infor-
mation (De Domenico, Nicosia, Arenas, & Latora, 2015).

It is also important to compare computations on a multilayer
network to those on suitable randomizations (Kivel€a et al., 2014).
Just as in monolayer network analysis (Farine, 2017; Fosdick,
Larremore, Nishimura, & Ugander, 2018; Newman, 2018c), it is vi-
tal to tailor the use of null models in multilayer networks in a
context-specific and question-specific way. For example, some
network features may arise from external factors or hold for a large
set of networks (e.g. all networks with the same intralayer degree
distributions), rather than arising as distinctive attributes of a focal
system.

Practical Availability and Further Development of Multilayer
Methodology

In practice, there are many ways for researchers in animal
behaviour to implement multilayer network analysis. Existing
software packages for examining multilayer networks include
MuxViz (De Domenico, Porter et al., 2015), Pymnet (Kivel€a) and the
R package Multinet (Magnani & Dubik, 2018). In Table 1, we
summarize available tools for implementing various measures.
Multilayer network analysis is a rapidly growing field of research
in network science, and new measures and tools continue to
emerge rapidly. Because this is a new, developing field of research,
many monolayer network methods have not yet been generalized
for multilayer networks; and many of the existing generalizations
have not yet been implemented in publicly available code. Addi-
tionally, many multilayer approaches have been published pre-
dominantly as proofs of concept in theoretically oriented research
or have been implemented only for multiplex networks, but not
for other multilayer network structures (such as interconnected
networks). Furthermore, multilayer networks with multiple as-
pects (e.g. time and behaviour type) have rarely been analysed in
practice, and the potential utility of incorporating multiple aspects
to investigate questions about social behaviour may propel the
development of tools to do so. The ongoing development of user-
friendly software and modules is increasing the accessibility and
practical usability of multilayer network analysis. Multilayer
network analysis is very promising, but there is also a lot more
work to do, as detailed above. Interdisciplinary collaborations
between applied mathematicians, computer scientists, social sci-
entists, behavioural ecologists, and others will be crucial for
moving this exciting new field forward.

CONCLUSIONS

In this article, we have discussed multilayer network analysis
and outlined potential avenues for using it to provide insights into
social behaviour in animals. Multilayer networks provide a useful
framework for considering many extensions of animal social
network analysis. For example, theymake it possible to incorporate
temporal and spatial processes alongside multiple types of behav-
ioural interactions in an integrated way. We have highlighted ex-
amples in which multilayer methods have been used previously to
study animal behaviour, illustrated them with several case studies,
proposed ideas for future work in this area and provided practical
guidance on some suitable available methodologies and software
(Table 1). Using multilayer network analysis offers significant po-
tential for uncovering eco-evolutionary dynamics of animal social
behaviour. Multilayer approaches provide new tools to advance
research on the evolution of sociality, group and population dy-
namics, and the roles of individuals in interconnected social and
ecological systems. The incorporation of multilayer methods into
studies of animal behaviour will facilitate efforts to improve un-
derstanding of what links social dynamics across behaviours and
contexts, and it provides an explicit framework to link social
behaviour with broader ecological and evolutionary processes (Silk
et al., 2018).
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